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CHAPTER 1

BACKGROUND

1.1 History of Chaocipher

The inventor of Chaocipher, John F. Byrne, reveals the history of his creation in

Silent Years: An Autobiography with Memoirs of James Joyce and Our Ireland. The

last chapter of the autobiography focuses on the story of Byrne’s unsuccessful forty

year quest to launch Chaocipher into the world for universal use. John F. Byrne

had been somewhat interested in the idea of an indecipherable cipher for many

years, but it was not until he read a detective story from a magazine that Byrne set

out to create a cipher of his own. In this story, the hero claimed that deciphering a

message was little trouble because “all such communications yield to methodic and

scientific analysis” [2]. Byrne thought that, certainly, this statement couldn’t

possibly be true. Surely a cipher could be created that could not be broken. Byrne

knew that true cryptanalysts would argue that any code could be broken and was a

bit astounded that even Edgar Allen Poe, a student of cryptography, stated that “It

may be roundly asserted that human ingenuity cannot concoct a cipher which

human ingenuity cannot resolve” [2]. Byrne, like many cryptographers, took this

statement as a challenge and created his own cipher, a small device inside a cigar

box and named it Chaocipher. Byrne was fully confident in the strength of his

cipher and described his vision for its use:

I envisioned, for instance, the utilization of my method and machine by

business men for business communications, and by brotherhoods and

social and religious institutions . . . I had, and still have in mind the

universal use of my machine and method by husband, wife, or lover. My

machine would be on hire, as typewriting machines now are, in hotels,

steamships, and, maybe even on trains and airliners, available for anyone

anywhere and at any time. And I believe, too, that the time will

come–and come soon–when my system will be used in the publication of

pamphlets and books written in cipher which will be unreadable except

by those who are specially initiated. [2]
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Byrne also claimed that his device and his principle were simple enough to be

used by “any normal ten-year-old school child” and yet, he boldly stated that “if

every person on earth were to encipher the same message . . . no two of the

resultant encipherments would be alike” [2]. Byrne first presented his device to

Marcellus Bailey, a famous patent attorney in Washington in June of 1919. Bailey,

while intrigued by Chaocipher, told Byrne that he needed to have professional,

detailed blueprints of his device in order to receive a patent and described the cigar

box device as “scarcely more than a toy” [2]. Undaunted, Byrne worked with a

first-rate draftsman for six months and returned to Bailey in 1920 with blueprints

for the construction of Chaocipher. While Bailey thought the drawings were

impressive, Byrne found that he was unable to find any machine makers willing to

even attempt building his machine. Many machine makers refused to even give

Byrne a bid, and others said that building the device would cost at least $5,000 and

possibly up to $20,000 [2]. Byrne invested thousands of dollars and years of his life

into making Chaocipher a success only to be rejected at every turn, which he found

to be very frustrating considering that he thought the Chaocipher could be

mass-produced and then sold at the price of ten dollars per device.

From 1918 until his death in 1960, Byrne continually attempted to market his

cipher machine to the U.S. Government as well as to commercial industries. Among

Byrne’s papers donated to the National Cryptologic Museum are “four decades of

correspondence between Byrne and, inter alia, the White House, the State

Department, the War Department, the Attorney General’s Office, the Department

of Justice, and the Navy Bureau of Engineering” [4]. Further, Byrne wrote personal

appeals to President and Mrs. Franklin Roosevelt, General Douglas MacArthur,

William Friedman, Colonel Parker Hitt, and a “host of other high-ranking U.S.

officials” [4]. Colonel Parker Hitt showed great interest in Chaocipher, but he

suggested that Byrne pursue commercial use rather than governmental use of the

device. Byrne also received rejection letters from Collier’s Weekly, Saturday

Evening Post, Bell Laboratories and the Teletype corporation. The Navy

Department showed interest in Chaocipher, and on December 7, 1937, Byrne

received a letter from Captain J.M. Irish, Assistant to the Chief of the Bureau of

Engineering stating that “the Bureau would be very pleased to examine fully a
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detailed description of your general system and of the mechanical means used for

obtaining the cipher” [2]. Byrne continued to correspond with the Navy

Department in the ongoing months until he went to a preliminary conference in

1938, which as he writes, “ended before it began” [2]. Commander Tucker advised

Byrne to take his device to the War Department and State Department. Thus, the

vicious cycle continued and Byrne presented his device again and again, never to be

used by the government, nor the public.

One of Byrne’s last efforts to draw attention to his cipher was his autobiography,

Silent Years, which was published in 1953. While the book was supposedly written

to tell the story of Byrne’s friendship with James Joyce, the last chapter, which

details the history of Chaocipher, comprises fully one eighth of the entire book [3]

and “concludes with 23 pages of corresponding plaintext and ciphertext” along with

a challenge to solve the remaining enciphered passages. Byrne offered a $5,000

reward or “the total royalties of the first three months after publication of the

book” to the first person to come forward with the correct solution. Byrne even sent

a copy of his book to Albert Einstein, along with a letter in which he wrote, “there

are a few subjects in it, especially the chapter on Chaocipher, which might be of

scientific interest to the Institute for Advanced Studies at Princeton”[1].

Byrne includes four exhibits of Chaocipher, the first of which is the longest and is

also the exhibit Byrne prepared for his presentation to the Navy Department. This

exhibit is titled “Chaocipher-The Ultimate Elusion,” and the first four pages

encrypt the following line repeatedly:

ALLGO OD,QU ICKBR OWNFO XESJU MPOVE RLAZY DOGTO SAVET

HEIRP ARTY.

Note that this sentence uses every letter of the alphabet at least once. Byrne uses

the letter Q to represent the comma and the letter W to represent the period. Lines

101-105 on the fifth page give an introduction to the Declaration of Independence

and the Gettysburg Speech which are quoted from lines 105 through 248. Byrne

writes that he omitted 35 characters from the Gettysburg Speech; following the

omission is “a comma followed by the words ‘but it can never forget what they did

here’ ” [2]. Lines 101-105 were left to decrypt as part of the challenge (and have

been deciphered in recent years as will be discussed later).
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The second exhibit is comprised of four passages from the first three chapters of

Caesar’s De Bello Gallico, with the plaintext in Latin, not an English translation.

Byrne chose this text because Latin does not use the letter W at all, and yet, W is

frequent in the ciphertext. Further, K is also repeated frequently throughout the

ciphertext despite the fact that the letter K is quite rare in the Latin language and

in the chosen Latin plaintext. The second exhibit, therefore, is a good example

illustrating Byrne’s opinion that Chaocipher could be used in any language used by

anyone in the world.

Byrne writes of the third exhibit that it “speaks for itself, and will, I fancy, be of

some interest to a certain person in Washington” [2]. While the certain person in

Washington remains unnamed, Byrne did address many people in Washington

about his cipher over the years, and from his autobiography, it is clear that he was

extremely disappointed and unimpressed with a reply from Washington in 1921

when he wrote a letter to Secretary Hughes at the State Department suggesting the

use of Chaocipher. All Byrne received was a reply from the Under Secretary, Harry

P. Fletcher, which read: “In reply I beg to inform you that while the Department

appreciates your courtesy in bringing this matter to its attention, the codes and

ciphers now used are adequate to its needs” [2]. Byrne described this reply as a

“paragon of smugness,” especially considering the fact that “Robert E. Sherwood

was reported only a little over a year ago in all our newspapers as declaring that

high Government officials, including the late Harry Hopkins, believed that the State

Department code was ‘very vulnerable’ as far back as 1941” [2]. Byrne addresses

Washington’s over-confidence in it’s security in his third exhibit of Chaocipher

which states:

THE HISTORY OF WAR TEEMS WITH OCCASIONS WHERE THE

INTERCEPTION OF DISPATCHES AND ORDERS WRITTEN IN

PLAIN LANGUAGE HAS RESULTED IN DEFEAT AND DISASTER

FOR THE FORCE WHOSE INTENTIONS THUS BECAME KNOWN

AT ONCE TO THE ENEMY.

The plaintext given in exhibit three is written without spaces and does not

include the final “Y” at the end of the word “ENEMY.” Clearly, Byrne felt that
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Washington needed to be more willing to consider using ciphers posed by

cryptographers rather than deem the “codes and ciphers now used” as “adequate to

its needs.”

The fourth and final exhibit is titled “A Glimpse of Chaos.” Again, Byrne

provides both plaintext and ciphertext. This exhibit is a direct quotation from a

“speech made by General of the Army, Douglas MacArthur, before the joint session

of Congress after his recall from Korea.” Byrne also writes that this exhibit differs

from the other three “in that it bears within itself full and complete instructions to

an initiate for its decipherment” [2].

While these four exhibits have provided challenges for many cryptanalysts in the

years since Byrne’s book was published, no one came forward to claim the reward.

Byrne even went so far as to challenge the American Cryptogram Association, The

New York Cipher Society, William Friedman (who had rejected the usefulness of his

cipher on multiple occasions) and even Professor Norbert Weiner of the

Massachusetts Institute of Technology to solve his code. Byrne even suggested the

cryptanalysts try to break his code with their “electronic calculating machines” [2].

Even so, Byrne’s code was never broken and he died in 1960, just a few years after

his autobiography was published. His son, John Byrne, Jr. took up his father’s

pursuit, but to no avail [4]. As Kahn writes in The Codebreakers,

One may presume that the reason both for the failure of the public to

read his cipher and the failure of the government to adopt it was that

while the cipher probably had many merits, its many dismerits

outweighed them for practical use. Byrne, like many inventors, both won

and lost. His cipher was never broken. But his dream never came true.

[3]

J.F. Byrne and John Byrne, Jr. kept much of the workings of Chaocipher a

secret. As a result, very little was known about the Chaocipher principle until 2010

when J.F. Byrne’s daughter-in-law, Mrs. Patricia Byrne, negotiated with the

National Cryptologic Museum and donated J.F. Byrne’s and John Byrne Jr.’s work,

along with a collection of notes, correspondences, and a crude mockup of the device.

Since 2010, the Chaocipher algorithm is now available to researchers, and

cryptanalysts are making substantial progress in deciphering the exhibits [4].
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1.2 The Chaocipher Algorithm

The majority of the material in this section is based on Moshe Rubin’s article,

“Chaocipher Revealed: The Algorithm” [5]. Byrne built his first model of the

Chaocipher device inside a cigar box. The device consists of two wheels which are

placed side by side and are connected so that when one wheel rotates in the

clockwise direction, the other wheel rotates in the counter-clockwise direction, very

similar to gears which “engage” and “disengage” (see Figure 1 below). On the outer

rim of each of the two wheels are 26 moveable tiles, each one labeled with a different

letter of the alphabet. In this way, there is an entire alphabet on each of the wheels.

Both of the alphabets are permuted differently, so that on the left wheel we have

one alphabet, with each of the 26 letters in a certain order, and on the right wheel,

there is another alphabet, with each of the 26 letters in a different order. For this

reason, we commonly will refer to the permuted alphabets on the left and right

wheels as the left alphabet and right alphabet, respectively. At the point where the

two wheels touch, one letter on the left wheel lines up with one letter on the right

wheel. If we want to encrypt say, the letter ‘B’, we rotate the wheels so that the

letter ‘B’ on the right wheel is at the center meeting point between the wheels. The

letter which is now next to the ‘B’ on the left wheel is the encrypted letter. We

summarize this process by emphasizing that we locate the plaintext in the right

alphabet, and thereby the corresponding ciphertext in the left alphabet. After the

encryption of each letter, both alphabets are permuted in a certain manner before

locating the next plaintext character in the right alphabet, followed by the

ciphertext in the left alphabet.

Figure 1: A wooden mockup of the Chaocipher device

(Courtesy of National Cryptologic Museum)[4]

Rubin summarizes the steps of encrypting a sequence of letters as follows:
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1. Locate the next plaintext letter in the sequence to be encrypted in the right

alphabet, and then use its position to locate the corresponding ciphertext

letter in the left alphabet.

2. Permute the left alphabet.

3. Permute the right alphabet.

4. Repeat Steps 1-3 until all plaintext is encrypted.

As Rubin explains, the permutations are much easier to understand if we think of

the left and right alphabets as 26 letter strings, rather than thinking of them in the

circular format. For example, starting with the alphabets from [5]:

LEFT (ct): HXUCZVAMDSLKPEFJRIGTWOBNYQ

RIGHT (pt): PTLNBQDEOYSFAVZKGJRIHWXUMC

If we want to encrypt the letter S, we locate the letter S in the right alphabet. S

is in the 11th position, so we look directly above the S, and we find the letter L in

the left alphabet in the 11th position. Therefore, plaintext S is encrypted as

ciphertext L.

Our next step is to permute the alphabets. The ways in which the left and right

alphabets are permuted before determining the next ciphertext letter are crucial to

the Chaocipher algorithm. Byrne uses the first position and the fourteenth position

in his algorithm frequently, and as a result, he refers to these positions by specific

names. The first position is named the zenith, and the fourteenth position is named

the nadir.

To permute the left alphabet:

1. Shift the entire left alphabet cyclically to the left so that the ciphertext letter

just obtained is in the first position.

2. Remove the letter in the second position, temporarily leaving an empty space

in the left alphabet.
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3. Shift the remaining letters from the third position up to and including the

letter in the 14th position to the left, thereby filling the empty space created

in the previous step. At the conclusion of this step, there should now be an

empty space in the 14th position.

4. Place the removed letter from Step 2 in the fourteenth position.

For example, above we used the following left alphabet:

LEFT (ct): HXUCZVAMDSLKPEFJRIGTWOBNYQ

To permute the left alphabet, we first shift the entire alphabet so that L, the

ciphertext letter we just determined is in the first position:

LEFT (ct): LKPEFJRIGTWOBNYQHXUCZVAMDS

Next, we remove the letter in the second position.

LEFT (ct): L PEFJRIGTWOBNYQHXUCZVAMDS

Shift the letters in the third position, up to and including the letter in the 14th

position, to the left, leaving an empty space in the 14th position.

LEFT (ct): LPEFJRIGTWOBN YQHXUCZVAMDS

Insert the removed letter K in the 14th position.

LEFT (ct): LPEFJRIGTWOBNKYQHXUCZVAMDS

Thus, we have the new permuted left alphabet.

To permute the right alphabet:

1. Shift the entire right alphabet cyclically to the left so that the plaintext letter

just enciphered is in the first position.

2. Shift the entire right alphabet cyclically one more position to the left, thereby

moving a new letter to the first position.
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3. Remove the letter in the third position, temporarily leaving an empty space in

the right alphabet.

4. Shift the remaining letters from the 4th position up to, and including the

letter in the 14th position to the left, thereby filling the empty space created

in the previous step. At the conclusion of this step, there should now be an

empty space in the 14th position.

5. Place the removed letter from Step 3 in the 14th position.

Continuing our example, above we used the following right alphabet:

RIGHT (pt): PTLNBQDEOYSFAVZKGJRIHWXUMC

First, shift the entire alphabet so that S, the letter just enciphered, is in the first

position.

RIGHT (pt): SFAVZKGJRIHWXUMCPTLNBQDEOY

Shifting to the left one more time, we have:

RIGHT (pt): FAVZKGJRIHWXUMCPTLNBQDEOYS

Removing the letter in the third position yields:

RIGHT (pt): FA ZKGJRIHWXUMCPTLNBQDEOYS

Shifting the letters in the 4th position up to and including the letter in the 14th

position, we have:

RIGHT (pt): FAZKGJRIHWXUM CPTLNBQDEOYS

Finally, inserting the removed letter in the 14th position, we get the new

permuted right alphabet:

RIGHT (pt): FAZKGJRIHWXUMVCPTLNBQDEOYS

We can now encrypt the next letter, say E, using these new alphabets.
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LEFT (ct): LPEFJRIGTWOBNKYQHXUCZVAMDS

RIGHT (pt): FAZKGJRIHWXUMVCPTLNBQDEOYS

Locating E in the right alphabet, we see that the letter A is directly above E in the

left alphabet, so the plaintext E is enciphered as the ciphertext A. From this point,

we would repeat our process, permuting the left and right alphabets and

enciphering the next plaintext letter, until we are finished enciphering the plaintext.
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CHAPTER 2

CHAOCIPHER AS A SEQUENCE OF PERMUTATIONS

2.1 Representation in Z26

The Chaocipher algorithm explained in the previous section can be described in

terms of two sequences σn and τn of permutations on the set A = {A,B,C,...,Z} as

follows. If p1, p2, ... denotes the sequence of plaintext letters, then the ciphertext

letters c1, c2, ... are determined by cn = σnτ
−1
n (pn), where σ1 and τ1 form the key. In

terms of the Chaocipher algorithm, σ1 represents the starting left alphabet, and τ1

represents the starting right alphabet. Further, σn+1 and τn+1 (i.e., the subsequent

left and right alphabets respectively) are determined from σn, τn, pn, and cn as

follows:

Let

λ =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

BCDEFGHIJKLMNOPQRSTUVWXYZA

)
,

and let

µ =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ACDEFGHIJKLMNBOPQRSTUVWXYZ

)

ν =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABDEFGHIJKLMNCOPQRSTUVWXYZ

)
.

Then σn+1 = σnλ
τ−1
n (pn)−1µ and τn+1 = τnλ

τ−1
n (pn)ν, where the value τ−1

n (pn) in the

exponent is interpretted as an integer under the mapping A 7→ 1, B 7→ 2, and so on.

λ is the permutation which shifts the entire alphabet one place to the left. By

raising λ to the appropriate power, we can shift the given alphabet the necessary

number of positions to the left. This step is essential to both the left and right

alphabet permutations, or by these definitions, to permutations of σ and τ

respectively. Notice that for the left alphabet permutation, we need to shift the

entire alphabet to the left so that the ciphertext letter just obtained is in the first

position, and for the right alphabet permutation, we need to shift the entire

alphabet to the left so that the plaintext letter just enciphered is in the first
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position.

µ removes the letter in the 2nd position, shifts the letters from the 3rd position

up to and including the letter in the 14th position to the left and places the

removed letter in the 14th position. Therefore µ is essential to the left alphabet

permutation described in the previous section.

Similarly, ν removes the letter in the 3rd position, shifts the letters from the 4th

position up to and including the letter in the 14th position to the left and places the

removed letter in the 14th position. Therefore ν is essential to the right alphabet

permutation described in the previous section.

Example 1: Suppose that the plaintext is SECRET and the key is given by

σ1 =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

HXUCZVAMDSLKPEFJRIGTWOBNYQ

)

and

τ1 =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

PTLNBQDEOYSFAVZKGJRIHWXUMC

)
.

Then with p1 = S we have

c1 = σ1τ
−1
1 (S) = σ1(K) = L.

Note that we had the same result when using Byrne’s algorithm above. The

plaintext S becomes the ciphertext L.

We then find σ2 and τ2 as described above:

σ2 = σ1λ
τ−1
1 (p1)−1µ.

Since τ−1
1 (p1) = τ−1

1 (S) = K 7→ 11, we have

σ2 = σ1λ
11−1µ = σ1λ

10µ.

Since multiplication of cyclic permutations is defined to be composition, we work
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our way from right to left:

σ2 = σ1

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

KLMNOPQRSTUVWXYZABCDEFGHIJ

)(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ACDEFGHIJKLMNBOPQRSTUVWXYZ

)
.

So performing the composition, we have:

σ2 = σ1

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

KMNOPQRSTUVWXLYZABCDEFGHIJ

)
.

Finally, writing out σ1, we have:

σ2 =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

HXUCZVAMDSLKPEFJRIGTWOBNYQ

)(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

KMNOPQRSTUVWXLYZABCDEFGHIJ

)

=

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

LPEFJRIGTWOBNKYQHXUCZVAMDS

)
.

This result matches our result for the second left alphabet above.

We now find the second right alphabet τ2 using our formula: τ2 = τ1λ
τ−1
1 (p1)ν.

Again, τ−1
1 (p1) = τ−1

1 (S) = K 7→ 11, so τ2 = τ1λ
11ν.

Working from right to left, we have:

τ2 = τ1

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

LMNOPQRSTUVWXYZABCDEFGHIJK

)(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABDEFGHIJKLMNCOPQRSTUVWXYZ

)

= τ1

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

LMOPQRSTUVWXYNZABCDEFGHIJK

)

=

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

PTLNBQDEOYSFAVZKGJRIHWXUMC

)(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

LMOPQRSTUVWXYNZABCDEFGHIJK

)

=

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

FAZKGJRIHWXUMVCPTLNBQDEOYS

)
.

Thus, using the permutation representations, we have found σ2 and τ2:
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σ2 =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

LPEFJRIGTWOBNKYQHXUCZVAMDS

)
,

τ2 =

(
ABCDEFGHIJKLMNOPQRSTUVWXYZ

FAZKGJRIHWXUMVCPTLNBQDEOYS

)
.

And the ciphertext c2 for p2 = E, by the formula above is c2 = σ2τ
−1
2 (p2).

So we get c2 = σ2τ
−1
2 (E) = σ2(W) = A. Thus c2 = A.

We continue this process until we have finished enciphering the word SECRET.

2.2 Representation in Z6

In this section, we consider a version of the Chaocipher algorithm modified to

work on the the alphabet A6 = {A,B,C,D,E,F} rather than over the full alphabet.

We then describe a known plaintext attack on this modified algorithm. The same

attack is applicable to the proper Chaocipher algorithm, but the smaller alphabet

size permits a complete example to be worked out. To account for the smaller

alphabet size, we will analyze the permutations in Z6 rather than Z26.

Keeping the same labeling and structure, but applying the principle to the

alphabet A6 = {A,B,C,D,E,F}, we let

λ =

(
ABCDEF

BCDEFA

)
.

Note that λ performs the same operation as before by shifting every letter to the

left cyclically one time.

Also, we let

µ =

(
ABCDEF

ACDBEF

)
,

and

ν =

(
ABCDEF

ABDCEF

)
.

.
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Note that in Z26, µ moved the second letter to the 14th position. Since there are

26 letters in the alphabet, position 14 is 1 position past the halfway point. Here we

apply the same idea to a string of length 6. The halfway point is position 3, and 1

more position to the right is position 4. So to model µ in Z6, we move the second

letter to position 4. Similarly, in Z26, ν moved the third letter to position 14, so in

Z6, we instead move the third letter to position 4.

Our sequences of permutations representing the left and right alphabets remain

exactly the same: σn+1 = σnλ
τ−1
n (pn)−1µandτn+1 = τnλ

τ−1
n (pn)ν, where the value

τ−1
n (pn) in the exponent is interpretted as an integer under the mapping A 7→ 1, B

7→ 2 and so on. The determination of ciphertext letters also remains the same,

cn = σnτ
−1
n (pn).

Since we are only using the letters A-F, our plaintext will resemble a string of

letters rather than words, but the process is still the same.

Example 2: Suppose the plaintext is FACADEBDA, and suppose

σ1 =

(
ABCDEF

BADFCE

)
,

and

τ1 =

(
ABCDEF

CFADEB

)
.

To encipher the plaintext, start with the first letter p1 = F.

c1 = σ1τ
−1
1 (p1) = σ1τ

−1
1 (F) = σ1(B) = A.

To find σ2, we use the sequence:

σ2 = σ1λ
τ−1
1 (p1)−1µ = σ1λ

τ−1
1 (F)−1µ = σ1λ

2−1µ = σ1λµ.
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So we have:

σ2 =

(
ABCDEF

BADFCE

)(
ABCDEF

BCDEFA

)(
ABCDEF

ACDBEF

)

=

(
ABCDEF

AFCDEB

)
.

Similarly, to find τ2, we use the sequence:

τ2 = τ1λ
τ−1
1 (p1)−1ν = σ1λ

τ−1
1 (F)ν = σ1λ

2ν.

So

τ2 =

(
ABCDEF

CFADEB

)(
ABCDEF

CDEFAB

)(
ABCDEF

ABDCEF

)

=

(
ABCDEF

ADBECF

)
.

To encipher p2 = A, we use the same formula as before:

c2 = σ2τ
−1
2 (p2) = σ2τ

−1
2 (A) = σ2(A) = A.

Continuing in this fashion, we get that the plaintext FACADEBDA is enciphered as

the ciphertext AADFEDACB.

We will use this plaintext and ciphertext in the next chapter.

16



Texas Tech University, Ashley Ray, August 2012

CHAPTER 3

KNOWN PLAINTEXT ATTACK

Suppose we are given a string of plaintext along with the corresponding string of

ciphertext. Given no other information, using the following algorithm, we will be

able to find a corresponding key. In this case, remember that the starting left and

right alphabets (σ1, τ1) form the key for Chaocipher. We will be using the following

3 equations. Also, begin with n← 1 and X ← A6 = {A,B,C,D,E,F}.

cn = σnτ
−1
n (pn), (3.1)

σn+1 = σnλ
τ−1
n (pn)−1µ, (3.2)

τn+1 = τnλ
τ−1
n (pn)ν. (3.3)

1. Evaluate (3.1) at n substituting the given values pn and cn.

2. Choose a letter for τ−1
1 (pn) from X . We will denote the guess with the letter

m, so τ−1
1 (pn) = m. This will also give that cn = σn(m) yielding one of the

letter’s locations in the left alphabet as well.

3. Substitute m into eqns (3.2) and (3.3) evaluated at n. Then X ← X − {m}
and n← n+ 1.

4. Evaluate (3.1) at n using the expanded expressions for σn and τn found in

Step 3.

5. Choose a letter q ∈ X for τ−1
1 (pn). Then evaluate the expression found in Step

4, assuming τ−1
1 (pn) = q. Thus, we will find another letter’s location in the left

alphabet. Then X ← X − {q}.

6. If our results yield a contradiction (meaning that our result tells us a letter

belongs in a location which is already filled by a different letter or that the

resulting letter has already been used in a different location), we will repeat

17
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Step 5 until we reach results which do not yield a contradiction. Keep track of

choices made. If our results do not yield a contradiction to previous results,

proceed to the next step.

7. Set X ← A6 − {CurrentImage(τ−1
1 )}. Repeat Steps 5 through 6 until we

have found σ1 and τ1 completely.

Example 3: Suppose we are given the following plaintext (pt) and corresponding

ciphertext (ct), and wish to determine σ1 and τ1.

(pt): FACADEBDA,

(ct): AADFEDACB.

Step 1: Evaluate (3.1) at n = 1 substituting the given values of p1 and c1 so that

c1 = σ1τ
−1
1 (p1). We know p1 = F and c1 = A, so we get:

A = σ1τ
−1
1 (F) = σ1(τ

−1
1 (F)).

Step 2: Guess τ−1
1 (F) = B. Evaluate the expression found in Step 1 based on this

assumption. Keep track of guesses.

σ1(B) = A.

We now have:

σ1 =

(
ABCDEF

A

)
and τ1 =

(
ABCDEF

F

)
.

Step 3: Substitute B 7→ 2 into equations (3.2) and (3.3) evaluated at n = 1, so

σ2 = σ1λ
2−1µ = σ1λµ,

τ2 = τ1λ
2ν.
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Step 4: Evaluate (3.1) at n = 2 using the expanded expressions for σ2 and τ2 found

in step 3. For example,

A = σ2τ
−1
2 (A) = σ1λµν

−1λ−2τ−1
1 (A).

Steps 5 and 6: To evaluate this expression, we need to make a guess for τ−1
1 (A). The

options are: τ−1
1 (A) ∈ {A,C,D,E,F}. Try all of these options and see which, if any,

lead to contradictions.

First assume τ−1
1 (A) = A. Then

A = σ1λµν
−1λ−2τ−1

1 (A)

= σ1λµν
−1λ−2(A)

= σ1λµν
−1(E)

= σ1λµ(E)

= σ1λ(E)

= σ1(F).

This is a contradiction to our prior result σ1(B) = A, so τ−1
1 (A) 6= A.

Second, assume τ−1
1 (A) = C.

A = σ1λµν
−1λ−2τ−1

1 (A)

= σ1λµν
−1λ−2(C)

= σ1λµν
−1(A)

= σ1λµ(A)

= σ1λ(A)

= σ1(B).

This statement is consistent with prior results, so τ−1
1 (A) = C is a possibility.
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Third, assume τ−1
1 (A) = D.

A = σ1λµν
−1λ−2τ−1

1 (A)

= σ1λµν
−1λ−2(D)

= σ1λµν
−1(B)

= σ1λµ(B)

= σ1λ(C)

= σ1(D).

This is a contradiction to our prior result σ1(B) = A, so τ−1
1 (A) 6= D.

Fourth, assume τ−1
1 (A) = E.

A = σ1λµν
−1λ−2τ−1

1 (A)

= σ1λµν
−1λ−2(E)

= σ1λµν
−1(C)

= σ1λµ(D)

= σ1λ(B)

= σ1(C).

This is a contradiction to our prior result σ1(B) = A, so τ−1
1 (A) 6= E.

Finally, assume τ−1
1 (A) = F.

A = σ1λµν
−1λ−2τ−1

1 (A)

= σ1λµν
−1λ−2(F)

= σ1λµν
−1(D)

= σ1λµ(C)

= σ1λ(D)

= σ1(E).

This is a contradiction to our prior result σ1(B) = A, so τ−1
1 (A) 6= F.

Therefore, if Step 1 is correct, then τ−1
1 (A) = C and we have σ1(B) = A.
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Noting our progress, we have:

σ1 =

(
ABCDEF

A

)
and τ1 =

(
ABCDEF

FA

)
.

Step 7: Repeat process until both σ1 and τ1 are found.

Evaluating (3.2) and (3.3) at n = 2 we get:

σ3 = σ2λ
τ−1
2 (A)−1µ,

τ3 = τ2λ
τ−1
2 (A)ν.

To simplify these expressions we need to evaluate τ−1
2 (A) in the exponent.

τ−1
2 (A) = ν−1λ−2τ−1

1 (A)

= ν−1λ−2(C)

= ν−1(A)

= A 7→ 1.

Also, we will replace σ2 and τ2 with the equivalent expanded expressions found

previously. We have the following:

σ3 = σ1λµλ
1−1µ = σ1λµµ,

τ3 = τ1λ
2νλ1ν = τ1λ

2νλν.

Evaluating (3.1) at n = 3, we have D = σ3τ
−1
3 (C).

Replacing σ3 and τ−1
3 using the equivalent expanded expressions above,

D = σ1λµµν
−1λ−1ν−1λ−2τ−1

1 (C)

To evaluate this expression we need to make a guess as to what τ−1
1 (C) is. The

remaining options are: τ−1
1 (C) ∈ {A,D,E,F}. Try all of the options to see if any lead

to contradictions and determine which are possibilities.
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First, assume τ−1
1 (C) = A.

D = σ1λµµν
−1λ−1ν−1λ−2τ−1

1 (C)

= σ1λµµν
−1λ−1ν−1λ−2(A)

= σ1λµµν
−1λ−1ν−1(E)

= σ1λµµν
−1λ−1(E)

= σ1λµµν
−1(D)

= σ1λµµ(C)

= σ1λµ(D)

= σ1λ(B)

= σ1(C).

This result does not contradict previous results, so τ−1
1 (C) = A could be a possibility.

Second, assume τ−1
1 (C) = D.

D = σ1λµµν
−1λ−1ν−1λ−2τ−1

1 (C)

= σ1λµµν
−1λ−1ν−1λ−2(D)

= σ1λµµν
−1λ−1ν−1(B)

= σ1λµµν
−1λ−1(B)

= σ1λµµν
−1(A)

= σ1λµµ(A)

= σ1λµ(A)

= σ1λ(A)

= σ1(B).

This is a contradiction to our prior result σ1(B) = A, so τ−1
1 (C) 6= D.
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Third, assume τ−1
1 (C) = E.

D = σ1λµµν
−1λ−1ν−1λ−2τ−1

1 (C)

= σ1λµµν
−1λ−1ν−1λ−2(E)

= σ1λµµν
−1λ−1ν−1(C)

= σ1λµµν
−1λ−1(D)

= σ1λµµν
−1(C)

= σ1λµµ(D)

= σ1λµ(B)

= σ1λ(C)

= σ1(D).

This result does not contradict previous results, so τ−1
1 (C) = E could be a possibility.

Finally, assume τ−1
1 (C) = F.

D = σ1λµµν
−1λ−1ν−1λ−2τ−1

1 (C)

= σ1λµµν
−1λ−1ν−1λ−2(E)

= σ1λµµν
−1λ−1ν−1(C)

= σ1λµµν
−1λ−1(D)

= σ1λµµν
−1(C)

= σ1λµµ(D)

= σ1λµ(B)

= σ1λ(C)

= σ1(D).

This result does not contradict previous results, so τ−1
1 (C) = F could be a possibility.

So τ−1
1 (C) ∈ {A,E,F}.

First, we will try τ−1
1 (C) = A. If this leads to a contradiction in future steps, we will

come back to this step and try one of the other two possibilities.
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Now if τ−1
1 (C) = A, then we also know σ1(C) = D. So we have the following:

σ1 =

(
ABCDEF

AD

)
and τ1 =

(
ABCDEF

CFA

)
.

Evaluating (3.2) and (3.3) at n = 3, we repeat the necessary computations as before

to get:

σ4 = σ3λ
τ−1
3 (C)−1µ,

τ4 = τ3λ
τ−1
3 (C)ν.

For both equations, we need to find τ−1
3 (C).

τ−1
3 (C) = ν−1λ−1ν−1λ−2τ−1

1 (C)

= ν−1λ−1ν−1λ−2(A)

= ν−1λ−1ν−1(E)

= ν−1λ−1(E)

= ν−1(D)

= C 7→ 3.

So substituting this value for τ−1
3 (C) yields:

σ4 = σ3λ
3−1µ,

τ4 = τ3λ
3ν.

And replacing σ3 and τ3 with their equivalent expanded expressions yields:

σ4 = σ1λµµλ
2µ,

τ4 = τ1λ
2νλνλ3ν.
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Now we can evaluate equation (3.1) at n = 4.

F = σ4τ
−1
4 (A)

= σ1λµµλ
2µν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (A)

= σ1λµµλ
2µν−1λ−3ν−1λ−1ν−1λ−2(C)

= σ1λµµλ
2µν−1λ−3ν−1λ−1ν−1(A)

= σ1λµµλ
2µν−1λ−3ν−1λ−1(A)

= σ1λµµλ
2µν−1λ−3ν−1(F)

= σ1λµµλ
2µν−1λ−3(F)

= σ1λµµλ
2µν−1(C)

= σ1λµµλ
2µ(D)

= σ1λµµλ
2(B)

= σ1λµµ(D)

= σ1λµ(B)

= σ1λ(C)

= σ1(D).

This statement does not contradict previous results, so we continue to the next step.

Noting our progress, we now have:

σ1 =

(
ABCDEF

ADF

)
and τ1 =

(
ABCDEF

CFA

)
.

Evaluating (3.2) and (3.3) at n = 4, we repeat the necessary computations as before.

σ5 = σ4λ
τ−1
4 (A)−1µ,

τ5 = τ4λ
τ−1
4 (A)ν.
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For both equations, we need to find τ−1
4 (A).

τ−1
4 (A) = ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (A)

= ν−1λ−3ν−1λ−1ν−1λ−2(C)

= ν−1λ−3ν−1λ−1ν−1(A)

= ν−1λ−3ν−1λ−1(A)

= ν−1λ−3ν−1(F)

= ν−1λ−3(F)

= ν−1(C)

= (D) 7→ 4.

So substituting this value for τ−1
4 (A) yields:

σ5 = σ4λ
4−1µ,

τ5 = τ4λ
4ν.

And replacing σ4 and τ4 with their equivalent expanded expressions yields:

σ5 = σ1λµµλ
2µλ3µ,

τ5 = τ1λ
2νλνλ3νλ4ν.

Evaluating (3.1) at n = 5 yields:

E = σ5τ
−1
5 (D)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (D).

To complete this computation, we need to figure out what τ−1
1 (D) is. We have 3

remaining options to check: τ−1
1 (D) ∈ {D,E,F}.
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First, assume τ−1
1 (D) = D.

E = σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2(D)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1(B)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1(B)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1(A)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3(A)

= σ1λµµλ
2µλ3µν−1λ−4ν−1(D)

= σ1λµµλ
2µλ3µν−1λ−4(C)

= σ1λµµλ
2µλ3µν−1(E)

= σ1λµµλ
2µλ3µ(E)

= σ1λµµλ
2µλ3(E)

= σ1λµµλ
2µ(B)

= σ1λµµλ
2(C)

= σ1λµµ(E)

= σ1λµ(E)

= σ1λ(E)

= σ1(F).

This result is not in contradiction to previous results, so τ−1
1 (D) = D could be a

possibility.
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Second, assume τ−1
1 (D) = E.

E = σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2(E)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1(C)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1(D)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1(C)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3(D)

= σ1λµµλ
2µλ3µν−1λ−4ν−1(A)

= σ1λµµλ
2µλ3µν−1λ−4(A)

= σ1λµµλ
2µλ3µν−1(C)

= σ1λµµλ
2µλ3µ(D)

= σ1λµµλ
2µλ3(B)

= σ1λµµλ
2µ(E)

= σ1λµµλ
2(E)

= σ1λµµ(A)

= σ1λµ(A)

= σ1λ(A)

= σ1(B).

This is a contradiction to our previous result that σ1(B) = A, so τ−1
1 (D) 6= E.
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Finally, assume τ−1
1 (D) = F.

E = σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2(F)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1ν−1(D)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1λ−1(C)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3ν−1(B)

= σ1λµµλ
2µλ3µν−1λ−4ν−1λ−3(B)

= σ1λµµλ
2µλ3µν−1λ−4ν−1(E)

= σ1λµµλ
2µλ3µν−1λ−4(E)

= σ1λµµλ
2µλ3µν−1(A)

= σ1λµµλ
2µλ3µ(A)

= σ1λµµλ
2µλ3(A)

= σ1λµµλ
2µ(D)

= σ1λµµλ
2(B)

= σ1λµµ(D)

= σ1λµ(B)

= σ1λ(C)

= σ1(D).

This is a contradiction to our previous result that σ1(B) = A, so τ−1
1 (D) 6= F.

Therefore, we know τ−1
1 (D) = D, and therefore σ1(F) = E. Noting our results, we

have:

σ1 =

(
ABCDEF

ADF E

)
and τ1 =

(
ABCDEF

CFAD

)
.

Again, we evaluate (3.2) and (3.3), this time at n = 5.

σ6 = σ5λ
τ−1
5 (D)−1µ,

τ6 = τ5λ
τ−1
5 (D)ν.
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To evaluate the exponents in both equations we need τ−1
5 (D).

τ−1
5 (D) = ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (D)

= ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2(D)

= ν−1λ−4ν−1λ−3ν−1λ−1ν−1(B)

= ν−1λ−4ν−1λ−3ν−1λ−1(B)

= ν−1λ−4ν−1λ−3ν−1(A)

= ν−1λ−4ν−1λ−3(A)

= ν−1λ−4ν−1(D)

= ν−1λ−4(C)

= ν−1(E)

= E 7→ 5.

Now, using this value and the equivalent expanded expressions for σ5 and τ5 we

have:

σ6 = σ1λµµλ
2µλ3µλ4µ,

τ6 = τ1λ
2νλνλ3νλ4νλ5ν.

Next, evaluating (3.1) at n = 6,

D = σ6τ
−1
6 (E)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (E)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (E).

30



Texas Tech University, Ashley Ray, August 2012

Now we know τ−1
1 (E) ∈ {E,F}. First, assume τ−1

1 (E) = E.

D = σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2(E)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1(C)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1(D)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1(C)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3(D)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1(A)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4(A)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1(C)

= σ1λµµλ
2µλ3µλ4µν−1λ−5(D)

= σ1λµµλ
2µλ3µλ4µν−1(E)

= σ1λµµλ
2µλ3µλ4µ(E)

= σ1λµµλ
2µλ3µλ4(E)

= σ1λµµλ
2µλ3µ(C)

= σ1λµµλ
2µλ3(D)

= σ1λµµλ
2µ(A)

= σ1λµµλ
2(A)

= σ1λµµ(C)

= σ1λµ(D)

= σ1λ(B)

= σ1(C).

This result does not contradict previous results, so τ−1
1 (E) = E is a possibility.
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Next, consider τ−1
1 (E) = F.

D = σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2(F)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1(D)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1(C)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3ν−1(B)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1λ−3(B)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4ν−1(E)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1λ−4(E)

= σ1λµµλ
2µλ3µλ4µν−1λ−5ν−1(A)

= σ1λµµλ
2µλ3µλ4µν−1λ−5(A)

= σ1λµµλ
2µλ3µλ4µν−1(B)

= σ1λµµλ
2µλ3µλ4µ(B)

= σ1λµµλ
2µλ3µλ4(C)

= σ1λµµλ
2µλ3µ(A)

= σ1λµµλ
2µλ3(A)

= σ1λµµλ
2µ(D)

= σ1λµµλ
2(B)

= σ1λµµ(D)

= σ1λµ(B)

= σ1λ(C)

= σ1(D).

This is a contradiction to our previous result σ1(D) = F.

Therefore, our only possibility is τ−1
1 (E) = E, so we also have D = σ1(C).

Keeping track of our results, we now have:

σ1 =

(
ABCDEF

ADF E

)
and τ1 =

(
ABCDEF

CFADE

)
.
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Again, we evaluate (3.2) and (3.3), this time at n = 6.

σ7 = σ6λ
τ−1
6 (E)−1µ,

τ7 = τ6λ
τ−1
6 (E)ν.

Calculating using the same process as in previous steps, we find that

τ−1
6 (E) = E 7→ 5.

After replacing σ6 and τ6 with their respective expanded expressions, we have the

following:

σ7 = σ1λµµλ
2µλ3µλ4µλ4µ,

τ7 = τ1λ
2νλνλ3νλ4νλ5νλ5ν.

Then, we evaluate (3.1) again at n = 7 to get:

A = σ7τ
−1
7 (B)

= σ1λµµλ
2µλ3µλ4µλ4µν−1λ−5ν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (B).

Our only remaining option for τ−1
1 (B) is F. Working from right to left and

evaluating as before, we find that A = σ1(B), which affirms prior results.

Noting these results, we now have:

σ1 =

(
ABCDEF

ADF E

)
and τ1 =

(
ABCDEF

CFADEB

)
.

We have now completed the starting right alphabet, τ1. We still lack two letters

positions in σ1. We know B and C belong in the two remaining positions, but we

don’t know which place exactly. At this point, we could use trial and error. For

example, we could suppose σ1(A) = B and σ1(E) = C. Then we can test to see if this

is correct. If not, we know that B and C must switch places. Even so, we want to

show that the sequences of permutations presented in this paper may be used to

directly find σ1 and τ1, so we will continue our process the necessary two steps

further.
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Continuing, evaluate (3.2) and (3.3) at n = 7.

σ8 = σ7λ
τ−1
7 (B)−1µ,

τ8 = τ7λ
τ−1
7 (B)ν.

Evaluating as before, we find that τ−1
7 (B) = D 7→ 4.

Note that replacing σ7 and τ7 with their respective expanded expressions yields:

σ8 = σ1λµµλ
2µλ3µλ4µλ4µλ3µ,

τ8 = τ1λ
2νλνλ3νλ4νλ5νλ5νλ4ν.

Then evaluating (3.1) at n = 8, we have:

C = σ8τ
−1
8 (D)

= σ1λµµλ
2µλ3µλ4µλ4µλ3µν−1λ−4ν−1λ−5ν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (D).
Computing from right to left as before, we get that C = σ1(E).

We now have:

σ1 =

(
ABCDEF

ADFCE

)
and τ1 =

(
ABCDEF

CFADEB

)
.

Finally, evaluate (3.2) and (3.3) at n = 8.

σ9 = σ8λ
τ−1
8 (D)−1µ,

τ9 = τ8λ
τ−1
8 (D)ν.

Computing, we find that τ−1
8 (D) = D 7→ 4. Replacing σ9 and τ9 with their

respective expanded expressions yields:

σ9 = σ1λµµλ
2µλ3µλ4µλ4µλ3µλ3µ,

τ9 = τ1λ
2νλνλ3νλ4νλ5νλ5νλ4νλ4ν.
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Evaluating (3.1) at n = 9 yields:

B = σ9τ
−1
9 (A)

= σ1λµµλ
2µλ3µλ4µλ4µλ3µλ3µν−1λ−4ν−1λ−4ν−1λ−5ν−1λ−5ν−1λ−4ν−1λ−3ν−1λ−1ν−1λ−2τ−1

1 (A).

Computing from right to left as before, we find that B = σ1(A).

Finally, we have both σ1 and τ1.

σ1 =

(
ABCDEF

BADFCE

)
and τ1 =

(
ABCDEF

CFADEB

)
.

Notice that these two alphabets are the exact same alphabets we used in Chapter

2 to encrypt the plaintext we used in this example.

Remark : As seen in the example, the equations used become progressively

longer with every step. For this reason, it is helpful to look at these equations in

smaller pieces in order to shorten the calculations. Each time we evaluate (3.1) and

substitute the expanded expressions for σn, τn found in the previous step, we get an

equation of the form:

cn = σ1...τ
−1
1 (pn)

The sequence of permutations between σ1 and τ−1
1 (pn) in any such equation can be

written as a composition of two permutations αn, βn defined such that

α1 = λτ
−1
1 (p1)−1µ

β1 = ν−1λ−τ
−1
1 (p1).

And for n ≥ 1,

αn+1 = αnλ
τ−1
n (pn)−1µ

βn+1 = ν−1λ−τ
−1
n (pn)βn.

In this way, our expanded expressions may be computed more quickly, and for

n ≥ 1, we have:

cn+1 = σ1αnβnτ
−1
1 (pn+1).

Further, it should also be noted that there are five other possible starting

alphabets. If for our first guess in Step 2, we say that τ−1
1 (F) = C, for example, and
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repeat the entire process, our resulting σ1 and τ1 are as follows:

σ1 =

(
ABCDEF

EBADFC

)
and τ1 =

(
ABCDEF

BCFADE

)
.

Notice that if we compare these alphabets, the letters are in the exact same order

as before. The only difference is that in the second set of alphabets, each letter is

shifted cyclically to the right one position. The first guess will determine the

starting place for the same cycle of letters. This means that there are at least six

possible starting left and right alphabets for any given piece of plaintext and

corresponding ciphertext.

The analogous statement holds in Z26. There are at least 26 possible starting

alphabets for any given plaintext and corresponding ciphertext, and the exact same

permutation sequences will lead the cryptanalyst to a key. Of course, the

computations in Z26 would take quite a long time to do by hand, but with the help

of a computer, we should be able to apply the same algorithm to any plaintext and

ciphertext encrypted using Chaocipher, as long as the known plaintext and

ciphertext both contain all 26 letters of the alphabet.

From the example shown here, we see that a string of 7 plaintext letters along

with the corresponding ciphertext were sufficient to find τ1, but not σ1. To find σ1

completely, we need a known plaintext size of length 9. Notice that if we look back

at the given plaintext and ciphertext, we see that once we reach p7, every letter in

A6 appears at least once. Since we use τ1 to locate plaintext, it makes sense that we

were able to find all of τ1 after 7 operations. The ciphertext string, however, still

had not used letters B and C, so we did not have enough information to completely

determine σ1 after 7 operations. It is not until we reach c9 that every letter in A6

has appeared at least once in the given ciphertext. For this reason, in this particular

example, we needed a known-plaintext size of length 9, and it took 9 operations to

find σ1 and τ1 completely.

We can then estimate that the known-plaintext size required depends upon the

letters present in a given string. We will be able to determine a key if all letters in

A6 appear once in both the plaintext and the ciphertext. Further work will need to

be done to determine an estimate of this size. Also, it would be interesting to
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determine how many operations, on average, would be needed to determine a key

using this known-plaintext attack.
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