
 1

CHAOCIPHER: SOLVING EXHIBITS 1 and 4.
{December 2010)

Author: Michael J. Cowan

ABSTRACT: Chaocipher was invented over 90 years ago by J F Byrne, who
claimed it was unbreakable. Frustrated by a lack of interest in US
official circles, Byrne published in 1953 large amounts of plain and
matching ciphertext –- though not a description of his enciphering
process -- to bear out his contention that the Chaocipher system was
'absolutely indecipherable'. A particular section issued a challenge
to decipher an encrypted message for which he offered a prize of
$5000. Nobody claimed the prize, neither in the 3 months of the
challenge nor in the 55 years thereafter. Things changed in May 2010
when the Byrne family donated their archive to the National
Cryptologic Museum, which described the enciphering system. Armed
with this knowledge I describe how to solve the challenges posed by
Byrne, using a computer.

1. Introduction.

92 years ago John F. Byrne invented a machine that enciphers
plaintext to a ciphertext that is almost completely random. He called
his cipher Chaocipher.

Byrne was convinced that Chaocipher was indecipherable. In the 1920's
he offered his invention to numerous officials in the US State
Department and War Department (where W.F.Friedman was involved) and
later to the Navy Department in 1937. None of them was interested
enough to adopt it. Frustrated by this lack of interest, he published
a book 'The Silent Years' in 19531 with a chapter describing his
views of the overwhelming merits of Chaocipher. He declined to reveal
his machine or enciphering system but he supplied an immense amount
of plain and matching ciphertext and challenged the world to break
his cipher, offering a prize of $5000.

On the face of it, with so much plain and matching ciphertext, it
should have been a simple affair to deduce how the enciphering was
done. In the event there were no claimants from that day to this.

The years have taken their toll and both John F Byrne and his son,
who helped in the Chaocipher project, have died without publishing
details of the invention. But then in May 2010 members of the Byrne
family very kindly donated two boxes of papers and artefacts to the
National Cryptologic Museum2, which explain the machine and the
algorithm.

Using knowledge of how the Chaocipher machine works I devised
computer algorithms to find Byrne's settings and to solve his
challenges. I will explain how I did this, describe errors I found in
Byrne's encipherments and reveal the so-far undeciphered parts of his
challenges.

1
2

 2

2. The Chaocipher algorithm and machine.

Byrne's basic machine comprised two wheels, each with the letters of
the alphabet around their periphery. One wheel drove the other during
encipherment. A mock-up built by John Byrne jr3 is illustrated below.

The letters around the periphery could be adjusted. I have made the
following diagram of the machine with the normal alphabet, which was
a starting position sometimes used by Byrne.

The alphabet runs clockwise round the right wheel and anticlockwise
round the left wheel, with the letter 'A' at position number 1 of
each wheel. This arrangement can also be represented as below, the
letter at the number 1 position always being shown first:

right ABCDEFGHIJKLMNOPQRSTUVWXYZ
left ABCDEFGHIJKLMNOPQRSTUVWXYZ

 FIGURE 1

3

 3

I am going to number all the positions on the wheel, as below,
because as we shall see encipherment involves moving the letters to
new position:

 1111111112222222
 12345678901234567890123456
right ABCDEFGHIJKLMNOPQRSTUVWXYZ
left ABCDEFGHIJKLMNOPQRSTUVWXYZ

The diagram above shows some of these numbered positions. These
numbered positions always remain the same, but with rotation of the
wheels the letters opposite the numbers change.

To encipher the plain letter 'C':

rotate the right wheel to bring 'C' to position 1. Because the wheels
are in contact, this also rotates the left wheel by a similar amount,
and we get:
 1111111112222222
 12345678901234567890123456
right CDEFGHIJKLMNOPQRSTUVWXYZAB
left CDEFGHIJKLMNOPQRSTUVWXYZAB

The letter at position 1 of the left wheel is now noted as the cipher
letter, which on this occasion is also 'C'.

As a final step in the encipherment cycle, the wheels are disengaged
and the letters on each wheel are permuted, though each wheel in its
own way:

Right Wheel
before 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
after 26 1 2 14 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25

Left Wheel
before 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
after 1 14 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26

 FIGURE 2

The permutations change the wheels to the following. Note that the
leftmost letter always represents the letter at position 1 in the
wheel – here 'D' is at position 1 of the right wheel and 'C' of the
left:

 1111111112222222
 12345678901234567890123456
right DEGHIJKLMNOPQFRSTUVWXYZABC
left CEFGHIJKLMNOPDQRSTUVWXYZAB

And that simple process is the secret of Chaocipher.

From now on I will just show the alphabets without the numbers, the
leftmost letter of each alphabet being always at the number 1
position.

The way the permutations were actually made on Byrne's machine are
described in Moshe Rubin's paper 'CHAOCIPHER REVEALED: THE ALGORITHM'

 4

Moshe Rubin © 2 July 2010 (Updated 30 July 2010) which can be found
at
http://www.mountainvistasoft.com/chaocipher/ActualChaocipher/Chaociph
er-Revealed-Algorithm.pdf

A full step-by-step illustration of the encryption of the 10 letters
'CHAOCIPHER' is given in Appendix 1 and a computer program in C
language for enciphering in Chaocipher is given in Appendix 2.

After enciphering just the ten letters CHAOCIPHER, the wheels become

rght RDABCKEGILNOPQFSHTUMJVWXYZ
left SHKTUVOMXYBCFGIJLNZAWPDEQR

and the shuffling effect of the permutation steps is already visible.

 3. Solving Exhibit 1.

In his 1st Exhibit, Byrne presents 13,615 letters of ciphertext.

He only provides part of the equivalent plaintext, as follows:

-he tells us that the initial 5,500 letters are 100 repeats of the
sentence
 ALLGOOD,QUICKBROWNFOXESJUMPOVERLAZYDOGTOSAVETHEIRPARTY.
To encipher the punctuation marks, Byrne represents a comma as 'Q'
and a period as 'W';

-he does not give the next 262 plain letters;

-he gives 7,836 letters of the Declaration of Independence and the
Gettysburg Address, again using letters to replace punctuation marks;

-he does not give the final 17 plain letters.

Downloads of the plain and ciphertexts are available at 'The
Chaocipher Clearing House', excellently run by Moshe Rubin, at this
web address:

http://www.mountainvistasoft.com/chaocipher/Chaocipher-ASCII-
versions.htm

In the plaintext Moshe has helpfully included a '?' to denote each
plain letter omitted by Byrne.

3.1 finding the letters in each wheel.

The challenge is to find the unknown plain letters by deciphering
those cipher letters that match them. To do this we must find how
Byrne setup the wheels – in other words, what were the letters around
the periphery of the right and left wheels when he began to encipher
Exhibit 1? With that knowledge we can decipher from start to finish
of the ciphertext and find the unknown plain letters.

To find the setup wheels I developed a Maze algorithm in 20095 when
working on another, sadly wrong, algorithm for Chaocipher. It uses

5

 5

successive pairs of plain/cipher letters from Exhibit 1. The
algorithm starts with no letters in the wheels and finds the way to
fit each pair into the wheels so that there are no conflicts.

The starting pair is pt=A,ct=C (I am going to use the abbreviations
pt and ct for plaintext and ciphertext) and these clearly can be
fitted as follows:
 1.3.5.7.9.1.3.5.7.9.1.3.5.
right: A-------------------------
left : C-------------------------

and after the subsequent permutation, following the rules already
given, the wheels become:

 1.3.5.7.9.1.3.5.7.9.1.3.5.
right: -------------------------A
left : C-------------------------

Now the next pair is pt=L,ct=L. Clearly the plain 'L' can be put
anywhere in the right wheel, from position 2 to position 25, with the
cipher 'L' inserted at the same position in the left wheel. Thus
there are 24 possibilities. This is like entering a maze and finding
that at the first junction there are 24 branches to choose from.

The algorithm takes a branch and progresses to the next junction
where it tries to fit the next plain/cipher pair. Again it will find
a number of possibilities and will chose one to follow.

Proceeding in this way a conflict is bound to be met at some stage
when trying to fit the next pair. For example, the plain letter may
already exist in the right wheel at a certain position but there may
be no space in the left wheel at that position for the cipher letter.
Or vice versa. In that case the algorithm chooses another branch from
the last junction and attempts to proceed. If all branches at the
last junction fail, then the algorithm backs up to the previous
junction and tries another branch. This is very much like finding
one's way through a maze by trial and error, which is why I call it a
Maze algorithm.

Eventually the algorithm will successfully fill both wheels with
letters after placing a certain number of pairs. That number will
depend on having encountered all the letters of the alphabet in both
plain and cipher texts.

For Exhibit 1 the wheels are filled with the 85th pair, where pt=R,
ct=M. Here are the plain and cipher letters:

plain:
ALLGOODQQUICKBROWNFOXESJUMPOVERLAZYDOGTOSAVETHEIRPARTYWALLGOODQQUICKB
ROWNFOXESJUMPOVER

cipher:
CLYTZPNZKLDDQGFBOOTYSNEPUAGKIUNKNCRINRCVKJNHTOAFQPDPNCVLTVFICOTSSLWYY
IHBICFUTHXNUVKGIM

Here are the wheels after R/M have been fitted.

right wheel KTBUCOFIMVSHQGDPWXJYLZRANE
left wheel IXLPJBQTKNRGUOFYCHZVEDMWAS

 6

The computer program is given in Appendix 3. This program took 35
minutes to find this solution of the wheels on my 2.4 GHz computer .

3.2 Solving the complete Exhibit 1 ciphertext.

Now we can use this discovery of the letters in the wheels after the
85th pair to decipher the rest of the ciphertext. Of course Byrne
gave us most of this decipherment, as explained earlier, except for
two sections which we now can decipher:

(i) the 262 plain letters from positions 5500 to 5761, which Byrne
omitted. Here is the decrypt:

ZENSHRINEDINTHISARCANUMQTOWHICHNONEWHODOESNOTPOSSESSTHEKEYMAYENTERQTH
EDECLARATIONOFINDEPENDENCEANDLINCOLNXSBEAUTIFULORATIONATGETTYSBURGARE
HEREREJINFORMEDWITHANINVISIBLEQINTANGIBLEANDIMPERCEPTIBLESOULWJWFWBYR
NEQANDMAPHJAGEFRWBEGUNAUGUSTSIXTEENQONENINETHREESEVENWZ

We can parse the decrypt, using the letters Byrne employed as
punctuation (see p 279 Silent Years)
Z=paragraph Q=comma X=apostrophe
W=period U=semicolon (except QQ used in line 112)
V= colon J= hyphen H=dash

"Enshrined in this Arcanum, to which none who does not possess the
key may enter, the Declaration of Independence and Lincoln's
beautiful oration at Gettysburg are here re-informed with an
invisible, intangible and imperceptible soul. J.F.Byrne, and
maphjagefr. Begun August sixteen, one nine three seven."

I have highlighted the ten letters maphjagefr because they make no
sense to me. Perhaps they represent the name of a person who helped
Byrne with Chaocipher, and whose name Byrne has re-encoded with a
private code – in a similar way as he has done in Exhibit 4, as we
shall see later. These ten letters remain a mystery.

(ii) the 17 final plain letters, again omitted by Byrne, decipher to
CORDIALTHANKSTOLO. To whom 'LO' refers is a matter of speculation,
and is another mystery.

3.3 Finding the starting wheels.

In section 3.1 we found the letter orders in the wheels after the
85th pair was fitted. It is possible to 'wind back' from this
position to find the letter orders for enciphering the initial (0'th)
pair which was pt=A, ct=C.

Again this is done with a computer program, and I have given mine in
Appendix 5. The algorithm is:

-with the wheels decoupled, reverse the permutations of Figure 2,
which gives the correct letters in the wheels for the previous
plain/cipher pair. It also puts the pair at position number 1 the
right/left wheels respectively;

 7

-with the wheels coupled, rotate left wheel to bring the last-but-one
cipher letter to position number 1 of the left wheel, rotating the
right wheel by a similar amount. This is the correct shift because
the cipher letter at the top of the left wheel does not move during
permutation (as can be seen in Figure 2).

From this we find the letters in the starting wheels were:

rw: AYZNBQDSEFGHLWIKCMOPRTUVJX
lw: CPEDQRSTIXYLMOZABFVGUHWJKN

We can see immediately that this is the correct setting for the first
encipherment of plain A to cipher C in Exhibit 1.

Byrne has chosen this starting position by following a rather curious
procedure. He has actually started with the normal alphabet that I
have shown earlier in Figure 1. Then he has chosen a keyword. He has
enciphered the first letter of the indicator using the right wheel
(normal practice) but has enciphered the second and third letters
using the left wheel and so on as follows:

Keyword THINKTHINK
Wheel used for plain letter: RLLRLLRRLR

The result is a letter order as follows:

rw: CMOPRTUVJXAYZNBQDSEFGHLWIK
lw: BFVGUHWJKNCPEDQRSTIXYLMOZA

which enciphers plain A to cipher C, after plain A in the right wheel
is shifted to the top, following normal procedure, with the two
wheels in contact. This is exactly what we discovered using the
program in Appendix 3.

Byrne could have achieved the same effect by enciphering in the
normal way the keyword TILNOYHIVK, but he presumably thought it more
effective to choose an easily remembered keyword and a wheel order of
RLLRLLRRLR. To me this seems of doubtful value.

As we shall see Byrne has used a similar, though modified, procedure
for his main challenge in Exhibit 4.

In this computer age it is very simple to find Byrne's keyword
 using a genetic algorithm, once the starting wheels have been found.
A program for this purpose is given in Appendix 4.

4. Solving Byrne's challenge of Exhibit 4.

Exhibit 4 is the central challenge that Byrne posed, for which he
offered a reward. He presented it in his book 'Silent Years', on
pages 283 and 284, and included the plain and cipher texts under the
heading of 'Exhibit 4'. These can again be downloaded from Moshe
Rubin's 'The Chaocipher Clearing House'.

Byrne gives us 1,908 letters of ciphertext. He tells us this contains
three sections:

 8

(1) encipherment of a portion of a speech by General MacArthur, for
which he gives 1,800 letters of plaintext.
(2) encipherment of "full and complete instructions to an initiate
for decipherment", though we are not told the length nor where this
is placed in the ciphertext.
(3) encipherment of a little over a dozen words that he has added
somewhere within the last two lines of ciphertext (that include 93
letters).

Byrne says that anyone who can send him the decrypt of the words he
has added will have provided evidence of being able to decipher the
whole of the ciphertext. But his challenge will only be met when a
decrypt of the whole of the ciphertext is provided.

4.1 Solving the end of Exhibit 4.

The computer solving program given in Appendix 2 for Exhibit 1, will
also find the wheels used for Exhibit 4 given a stretch of matching
plain and cipher texts. But here there is a rub. Byrne has not told
us where the 1800 letters of plaintext fit with the 1,908 letters of
ciphertext.

I began by trying to match the start of the plaintext to various
starting positions in the ciphertext, but could not get a solution. I
then turned to trying to match the final 300 letters of plaintext
towards the latter part of the ciphertext.

Knowing that Byrne had added up to 93 letters after the plaintext of
MacArthur's speech I set out by matching the start of the last 300
letters of plaintext with the start of the last 393 letters of
ciphertext. After 37 seconds my program found this was an impossible
choice to solve. So then I started 392 letters before the end, which
again was rejected in short order. Finally on the fifth choice of
cipher, starting 388 letters before the end, I got a solution after 1
min 40 secs:

pt=B ct=D for position=178
right ZHOVIKMGNUDFPQCT.JALYBRWSE
left YUNEXKHRBSCPTAFLJQVZGDMOWI

These alphabets are correct at the 178th letter from the start of the
plain and cipher texts I used (given in Appendix 5), which are plain
B and cipher D. The alphabet for the right wheel is missing a letter
– this is evidently 'X' and it is missing because it was not present
in the 300 letters of plaintext.

Now one can encipher to the very end, inserting these alphabets and
starting at the point in the ciphertext where plain B = cipher D
(position 1500 for the plaintext and position 1520 for the
ciphertext, as shown in Appendix 5). In this way the final unknown
plain letters can be deciphered as:

THESEPOLITICALANDSOCIALCOTHEPEOPLESOFASIANOWSEEDAWNOFNEWOPPORTUNITYQA
NDPOLITICALFREEDOMZ

Parsing as before, we get

 9

"These political and social co the peoples of Asia now see dawn of
new opportunity, and political freedom."

Most of these words have been selected from MacArthur's speech (in
bold below) but the others have been added by Byrne:

"These political and social co the peoples of Asia now see dawn of
new opportunity, and political freedom."

What Byrne intended with the word 'co' is not clear to me.

4.2 Solving the start of Exhibit 4.

Having now solved to the end of Exhibit 4, it is also possible to go
backwards from the B-D entry point, permuting in reverse as in
Appendix 5, and so deciphering all the way back to the beginning of
the ciphertext. This reveals that MacArthur's speech is preceded by
20 letters of other plaintext, though these letters appear to be
gibberish:

 1st 20 letters MacArthur's speech
cipher PMRGAHTMRZABMGAKMAAC VEHRNWQSJLDIWLUKKTGYRVSAEBPWFNRKPDPQTQJ
decrypt MHSCBUUFWREUEOJVNAFG BEYONDPOINTINGOUTTHESEGENERALTRUISMSQIS

To me the gibberish was inexplicable until reading an explanation
that I found in one of the papers from the Byrne archive, posted at
the National Cryptologic Museum1. This indicated that the initial 20
letters of ciphertext are not Chaocipher at all, but are the result
of a monoalphabetic encryption with what Byrne called his 'indicating
key' or 'private code'.

cipher: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
plain R P Z M V K H A W F E B L X G T D C J O Y U N Q S I

The first 20 letters are thus deciphered as follows:
ciphertext PMRGAHTMRZABMGAKMAAC
decrypt TLCHRAOLCIRPLHRELRRZ.

The decrypt at first glance is still gibberish, though perhaps one
can make out the word 'CHAOCIPHER' within it. But the Byrne paper
explains that the decrypt is in fact the instructions for setting up
the machine, after initially setting the wheels with the normal
alphabet and turning them to bring the A's to the top position (as in
Fig 1):

TL – turn the left wheel to bring 'T' to the top;
CHR – turn the right wheel to bring 'C' to the top and then permute;
 ditto 'H' ditto
AOL – turn the left wheel to bring 'A' to the top and then permute;
 ditto 'O' ditto
CIR – turn the right wheel to bring 'C' to the top and then permute;
 ditto 'I' ditto
and so on until 'Z' is reached. This letter signifies the end of
instructions. At that stage the wheels are as follows:

rght STUKVWYZAFCDLXEHIJMNBOPQGR
left PFGTHXIWJKLADESNOQRUVYZMBC

Now the machine is ready to encipher the rest of the plaintext. As
shown above, after the initial 20 letters the next plain letter is

 10

'B' that enciphers to 'V', in accordance with the wheel alphabets
just shown.

We see here how Byrne set-up the machine to encipher Exhibit 4. He
chose a keyword and a pattern of using either the right or the left
wheel to represent the letters of this keyword. He then created a
shorthand form of instructions, enciphered them with his private code
and in the case of Exhibit 4 put the result as the initial cipher
letters of his message. Finally he setup the wheels with normal
alphabets, rotated the wheels to bring ‘A’ to position number 1 and
carried out the instructions, creating nicely mixed alphabets on the
wheels. These he used to begin enciphering his plaintext message.

(In Exhibit 1, as explained earlier) Byrne used a similar setup
procedure but did not include the setup 'code' as the initial letters
of the ciphertext.

Byrne expected a successful challenger to decrypt the whole of number
four exhibit, including the first 20 cipher letters that as we have
seen were not enciphered by Chaocipher at all. Byrne wrote on p 284
Of Silent Years that proof of successful decryption will only be
accepted by "being able to decipher the whole of number four
exhibit". In other words the successful candidate would have two
different ciphers to solve.

Now it was clear to me why I could not solve the alphabets from the
start of the ciphertext – because the start of the ciphertext was not
Chaocipher! But it did not explain failure at start positions further
into the ciphertext. By comparing the decrypt obtained from the
discovered alphabets with the plaintext given by Byrne, I saw that
Byrne had changed the letters he used for punctuation from those
described on p 279 of 'Silent Years' and described earlier in this
article. Instead of representing an apostrophe as 'X' and a hyphen as
'J', he inverted the substitutions. That was enough to disrupt my
solver, which was putting an 'X' into the right wheel at a position
where Byrne was using a 'J'. This was an unexpected example of one of
the weaknesses of Chaocipher.

Some comments on the value of Chaocipher.

As a matter of interest, in Exhibits 1 and 4 Byrne termed position
number 1 as the 'Zenith' and position 14 as the 'Nadir'. Actually the
same ciphertexts will be obtained whichever particular position is
used as the Zenith as long as:

-the Nadir is at the Zenith position plus 13 (mod 26). So if the
Zenith is at position number 1 then the Nadir is at position 14.
-the same positions for Zenith and Nadir are used for both wheels.

Chaocipher is a clever idea because part of the enciphering alphabet
is changed for every letter. The part that changes depends on the
plaintext letter being enciphered. Since the latter is unknown to the
cryptanalyst, and is in essence random, the changes appear to be
random also. Consequently the security of Chaocipher is impressive.
A break usually requires 80 or more letters of plaintext, far more
than will be available from a probable word. A depth is of limited
use because different plaintexts will quickly create totally
different permutations.

On the negative side, Chaocipher was an extremely tedious cipher to

 11

operate, with the painstaking task of rearranging selected letters in
both wheels after every encipherment. John Byrne jr commented that
“perfect accuracy was essential when enciphering a message because
one error would distort the rest of the cipher”. He had “memories of
tense and tedious hours striving for perfect accuracy while working
with my father and his ‘contraption’ at the dining room table.”7

To try and mechanise the process, Byrne had worked for 6 months with
a draughtsman in 1920 to produce a design and engineering drawings
for a machine with a keyboard, but its estimated cost was so high
that it was never built. (This will be the subject of a futute
paper). No doubt these negative factors were responsible for the lack
of interest from those whom Byrne approached and for their rejection
of Chaocipher.

When looked at overall in Byrne's era, the security advantage of
Chaocipher is nullified because encipherment is slow and difficult,
and any error disrupts the rest of the message. In that sense
Chaocipher had little value compared with other systems then
available.

In the present era the practical drawbacks can be overcome by using a
computer. But on the other hand a computer considerably enhances the
cryptanalytic potential. I expect that, under normal traffic
conditions, algorithms will be developed to break Chaocipher with
'probable words' of reasonable length, such as the 20 to 30 letters
that were available during WW2 for breaking ENIGMA. Partial solutions
may then possibly be extended by Brute Force. But at the moment this
is all speculation on my part and the feat has yet to be accomplished
in practice.

Acknowledgements

I acknowledge with thanks the generosity of the National Cryptologic
Museum for releasing papers from the Byrne Archive, to their
Librarian Rene Stein for her sterling efforts in copying and scanning
these documents and to David D'Auria for the photo of the enciphering
machine. Also to Moshe Rubin for his excellent Chaocipher Clearing
Site, where there exists a fund of invaluable information for the
enthusiast to draw on.

Appendix 1 – example of step by step encipherment.

In this case plain CHAOCIPHER is ciphered to CGYLYCJZMS, starting
with normal alphabets in the wheels, with 'A' at the top (that is at
position number 1).

wheels at start
right ABCDEFGHIJKLMNOPQRSTUVWXYZ
left ABCDEFGHIJKLMNOPQRSTUVWXYZ

7

 12

engage wheels, move plain to top of right wheel pt=C ct=C

right CDEFGHIJKLMNOPQRSTUVWXYZAB
left CDEFGHIJKLMNOPQRSTUVWXYZAB

disengage and permute the wheels
right DEGHIJKLMNOPQFRSTUVWXYZABC
left CEFGHIJKLMNOPDQRSTUVWXYZAB

engage wheels, move plain to top of right wheel pt=H ct=G

right HIJKLMNOPQFRSTUVWXYZABCDEG
left GHIJKLMNOPDQRSTUVWXYZABCEF

disengage and permute the wheels
right IJLMNOPQFRSTUKVWXYZABCDEGH
left GIJKLMNOPDQRSHTUVWXYZABCEF

engage wheels, move plain to top of right wheel pt=A ct=Y

right ABCDEGHIJLMNOPQFRSTUKVWXYZ
left YZABCEFGIJKLMNOPDQRSHTUVWX

disengage and permute the wheels
right BCEGHIJLMNOPQDFRSTUKVWXYZA
left YABCEFGIJKLMNZOPDQRSHTUVWX

engage wheels, move plain to top of right wheel pt=O ct=L

right OPQDFRSTUKVWXYZABCEGHIJLMN
left LMNZOPDQRSHTUVWXYABCEFGIJK

disengage and permute the wheels
right PQFRSTUKVWXYZDABCEGHIJLMNO
left LNZOPDQRSHTUVMWXYABCEFGIJK

engage wheels, move plain to top of right wheel pt=C ct=Y

right CEGHIJLMNOPQFRSTUKVWXYZDAB
left YABCEFGIJKLNZOPDQRSHTUVMWX

disengage and permute the wheels
right EGIJLMNOPQFRSHTUKVWXYZDABC
left YBCEFGIJKLNZOAPDQRSHTUVMWX

engage wheels, move plain to top of right wheel pt=I ct=C

right IJLMNOPQFRSHTUKVWXYZDABCEG
left CEFGIJKLNZOAPDQRSHTUVMWXYB

disengage and permute the wheels
right JLNOPQFRSHTUKMVWXYZDABCEGI
left CFGIJKLNZOAPDEQRSHTUVMWXYB

engage wheels, move plain to top of right wheel pt=P ct=J

right PQFRSHTUKMVWXYZDABCEGIJLNO
left JKLNZOAPDEQRSHTUVMWXYBCFGI

disengage and permute the wheels
right QFSHTUKMVWXYZRDABCEGIJLNOP

 13

left JLNZOAPDEQRSHKTUVMWXYBCFGI

engage wheels, move plain to top of right wheel pt=H ct=Z

right HTUKMVWXYZRDABCEGIJLNOPQFS
left ZOAPDEQRSHKTUVMWXYBCFGIJLN

disengage and permute the wheels
right TUMVWXYZRDABCKEGIJLNOPQFSH
left ZAPDEQRSHKTUVOMWXYBCFGIJLN

engage wheels, move plain to top of right wheel pt=E ct=M

right EGIJLNOPQFSHTUMVWXYZRDABCK
left MWXYBCFGIJLNZAPDEQRSHKTUVO

disengage and permute the wheels
right GILNOPQFSHTUMJVWXYZRDABCKE
left MXYBCFGIJLNZAWPDEQRSHKTUVO

engage wheels, move plain to top of right wheel pt=R ct=S

right RDABCKEGILNOPQFSHTUMJVWXYZ
left SHKTUVOMXYBCFGIJLNZAWPDEQR

--

APPENDIX 2

/*
 Discover alphabets from plain and ciphertext.
 Includes initial pt & ct for solving Exhibit 1.

*/

 #include <conio.h>
 #include <fstream.h>

 char rw[500][30],lw[500][30],plain[1000],code[1000];
 char primus,inter,rb[30],lb[30];
 char rt[30],lt[30];

 int j,k,m,n,p,q,t,x,y,z;
 int len,flag,move,ptr[500],flag_r,flag_l;
 int nop,adv;
 int noo[500],pos[500][30];
 int score,bestscore;
 int len_r,len_l;
 //.....these arrays are for permuting the alphabets.....
 int index_r[30] ={0,2,3,5,6,7,8,9,10,11,12,13,14,15,4,16,17,18,19,
 20,21,22,23,24,25,26,1};
 int index_l[30] ={0,1,3,4,5,6,7,8,9,10,11,12,13,14,2,15,16,17,18,
 19,20,21,22,23,24,25,26};

 double nok;
 time_t start_time,end_time;
 float lapse;

 void get_options(void);
 void permute(void);

 14

 void get_score(void);

 main()

 {

strcpy(plain,"ALLGOODQQUICKBROWNFOXESJUMPOVERLAZYDOGTOSAVETHEIRPARTYW
ALLGOODQQUICKBROWNFOXESJUMPOVER");

strcpy(code,"CLYTZPNZKLDDQGFBOOTYSNEPUAGKIUNKNCRINRCVKJNHTOAFQPDPNCVL
TVFICOTSSLWYYIHBICFUTHXNUVKGIM");

 start_time=time(NULL);

 len=strlen(plain);
 len_r=len_l=0; flag_r=flag_l=0;
 for(j=0;j<500;j++) ptr[j]=0;

 // 1.3.5.7.9.1.3.5.7.9.1.3.5.
 strcpy(rw[0],"*..........................");//right wheel
 strcpy(lw[0],"*..........................");//left wheel

 nop=26;//nr of positions in alphabets

 //..put 0'th pair into wheels in permed position
 rw[0][nop]=plain[0]; lw[0][1]=code[0];
 adv=1; //flag to advance to next node
 j=0;
 cout<<"start "; for(m=1;m<nop+1;m++) cout<<rw[j][m];
 cout<<endl;
 cout<<" "; for(m=1;m<nop+1;m++) cout<<lw[j][m];
 cout<<endl<<endl;
 j=0;
 while(j<len-1)
 {

 j++; // position in text
 nok++; //counter
 if(j<0)
 {cout<<"Run failed - review assumptions"<<endl; getch();}
 //...get last wheels, permed....
 for(m=1;m<nop+1;m++)
 {rw[j][m]=rw[j-1][m]; lw[j][m]=lw[j-1][m];}

 if(adv>0) //advance to next node
 { get_options(); ptr[j]=-1;}

 if(noo[j]>0) // nr of options for placement
 {
 ptr[j]++; // pointer to options
 if(ptr[j]<noo[j])
 {
 //..put the pair into current alphabets..
 rw[j][pos[j][ptr[j]]]=plain[j];
 lw[j][pos[j][ptr[j]]]=code[j];
 get_score(); // nr of letters in current alpha't
 permute();

 15

 adv=1; // flag to go forward to next node
 }
 else //ptr advanced too far
 {j=j-2; adv=0;} //so go back to previous node
 }
 else {j=j-2;adv=0;} //no options,back to previous node
 }

 cout<<endl<<"end";
 getch();

 return 0;
 }

//---

 void get_options(void)
 {
 int m,x;
 //...determine whether pt is in rt whl and if ct in lt whl,,,,
 flag_r=flag_l=0;
 for(x=1;x<nop+1;x++)
 if(plain[j]==rw[j][x]) {flag_r=x;break;}
 for(x=1;x<nop+1;x++)
 if(code[j]==lw[j][x]) {flag_l=x;break;}

 if(flag_r>0 && flag_l>0) //pt and ct present in rw and lw
 if(flag_r!=flag_l) noo[j]=0; // different positions so
 // no options
 else {noo[j]=1; pos[j][0]=flag_r; } // else just 1 option

 else if(flag_r>0 && flag_l==0) //pt exists, ct doesn't
 {
 if(lw[j][flag_r]=='.')
 {noo[j]=1; pos[j][0]=flag_r;}//OK if space for ct
 else noo[j]=0;
 }

 else if(flag_l>0 && flag_r==0) //ct exists, pt doesn't
 {
 if(rw[j][flag_l]=='.')
 {noo[j]=1; pos[j][0]=flag_l;}//OK if space for pt
 else noo[j]=0;
 }
 else // a number of slots free - list them in pos[j][]
 {
 noo[j]=0; //nr of options
 for(p=1;p<nop+1;p++)
 if(rw[j][p]=='.' && lw[j][p]=='.')
 {pos[j][noo[j]]=p; noo[j]++;}

 }

 }
 //...
 void permute(void)
 {
 int m;
 //......move pt & ct to top of wheel ...

 for(m=1;m<nop+1;m++) if(rw[j][m]==plain[j]) break;

 16

 //cout<<"m="<<m<<endl;
 for(p=1;p<nop+1;p++)
 {
 x=p+m-1; if(x>nop) x-=nop;
 rb[p]=rw[j][x]; lb[p]=lw[j][x];
 }

 //...permute the buffers back into the wheels....
 for(m=1;m<nop+1;m++) rw[j][m]=rb[index_r[m]];
 for(m=1;m<nop+1;m++) lw[j][m]=lb[index_l[m]];

 }
 //..
 void get_score(void)
 {
 score=0;
 for(m=1;m<nop+1;m++)
 {
 if(rw[j][m]!='.') score++;
 if(lw[j][m]!='.') score++;
 }

 if(score>bestscore) //display best results to date
 {
 bestscore=score;
 end_time=time(NULL); lapse=end_time-start_time;
 cout<<"time="<<lapse<<" nok="<<nok<<" position="<<j<<"
score="<<score<<" pt="<<plain[j];
 cout<<" ct="<<code[j]<<endl;
 cout<<"right wheel ";
 for(m=1;m<nop+1;m++) cout<<rw[j][m];cout<<endl;
 cout<<"left wheel ";
 for(m=1;m<nop+1;m++) cout<<lw[j][m]; cout<<endl;
 cout<<endl;
 }

 }
--

Appendix 3

/*
 Wind back wheels from 85th position to find
 starting alphabets
*/

 #include <conio.h>
 #include <fstream.h>

 char rw[30],lw[30],plain[1000],code[1000];
 char primus,inter,rb[30],lb[30],srb[30],slb[30];
 char rt[30],lt[30];

 int j,k,m,n,p,q,t,x,y,z;

 int shift,start,pos,len;
 //.....these arrays are for permuting the alphabets.....

 17

 //old pos 0 1 2 3 4 5 6 7 8 9 10
11.......................................25.
 int new_pos_r[30] =
{25,0,1,13,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24
};

 // 26 1 2 14 3 4 5 6 7 8 9 10 11 12 13 15 16 17
18 19 20 21 22 23 24 25

 int new_pos_l[30] =
{0,13,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25
};

 void get_options(void);
 void permute(void);
 void get_score(void);

 main()

 {

strcpy(code,"CLYTZPNZKLDDQGFBOOTYSNEPUAGKIUNKNCRINRCVKJNHTOAFQPDPNCVL
TVFICOTSSLWYYIHBICFUTHXNUVKGIM");
 len=strlen(code);

 strcpy(rw,"KTBUCOFIMVSHQGDPWXJYLZRANE"); //for exh1 ending pt=R,
ct=M
 strcpy(lw,"IXLPJBQTKNRGUOFYCHZVEDMWAS");

 start=len-1;

 for(pos=start-2;pos>-1;pos--)
 {
 //....depermute
 cout<<"step 1, depermute"<<endl;
 for(m=0;m<26;m++) rb[m]=rw[new_pos_r[m]];
 for(m=0;m<26;m++) lb[m]=lw[new_pos_l[m]];
 for(m=0;m<26;m++) cout<<rb[m]; cout<<endl;
 for(m=0;m<26;m++) cout<<lb[m]; cout<<endl<<endl; //getch();

 //....find position of code[pos]...
 cout<<"step 2, shift alphabets so code["<<pos<<"] at lw[0]
="<<code[pos]<<endl;
 for(shift=0;shift<26;shift++) if(lb[shift]==code[pos]) break;

 for(m=0;m<26;m++)
 {
 x=m+shift;x=x%26;
 rw[m]=rb[x]; lw[m]=lb[x];
 }
 for(m=0;m<26;m++) cout<<rw[m]; cout<<endl;

 18

 for(m=0;m<26;m++) cout<<lw[m]; cout<<endl<<endl; //getch();

 }
 //....make final depermute.....
 cout<<"final depermute"<<endl;
 for(m=0;m<26;m++) rb[m]=rw[new_pos_r[m]];
 for(m=0;m<26;m++) lb[m]=lw[new_pos_l[m]];
 for(m=0;m<26;m++) cout<<rb[m]; cout<<endl;
 for(m=0;m<26;m++) cout<<lb[m]; cout<<endl<<endl;

 cout<<endl<<"end";
 getch();

 return 0;
 }

//---

Appendix 4

/*
 genetic 1

*/

 #include <conio.h>
 #include <fstream.h>

 char rw[30],lw[30],alpha[60000][20],code[1000],beta[20];
 char primus,inter,rb[30],lb[30];
 char target_r[30],target_l[30];;

 int j,k,m,n,p,q,t,x,y,z,r1,xx,yy;
 int len,flag,move,pop,repeat;

 int score,bestscore,scorea[60000];

 //.....these arrays are for permuting the alphabets.....

 //old pos 0 1 2 3 4 5 6 7 8 9 10
11.......................................25.
 int new_pos_r[30] =
{25,0,1,13,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24
};

 // 26 1 2 14 3 4 5 6 7 8 9 10 11 12 13 15 16 17
18 19 20 21 22 23 24 25

 int new_pos_l[30] =
{0,13,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25
};

 void get_random_alpha(void);
 void decrypt(void);

 19

 void decrypt_beta(void);
 void get_score(void);

 main()

 {
 randomize();
 //0.2.4.6.8.0.2.4.6.8.0.2.4.
 strcpy(target_r,"CMOPRTUVJXAYZNBQDSEFGHLWIK");
 strcpy(target_l,"BFVGUHWJKNCPEDQRSTIXYLMOZA");

 len=10; bestscore=0; pop=60000;

 for(j=0;j<pop;j++)
 {
 get_random_alpha();
 decrypt();
 get_score();
 scorea[j]=score;
 }

 repeat=1;
 while(repeat>0)
 {
 xx=random(pop);
 yy=random(pop);
 r1=random(len);
 for(m=0;m<r1;m++) beta[m]=alpha[xx][m];
 for(m=r1;m<len;m++) beta[m]=alpha[yy][m];
 decrypt_beta();
 get_score();
 if(score>scorea[xx])
 {for(m=0;m<len;m++) alpha[xx][m]=beta[m];
scorea[xx]=score;}
 if(score>scorea[yy])
 {for(m=0;m<len;m++) alpha[yy][m]=beta[m];
scorea[yy]=score;}
 }

 cout<<endl<<"end";
 getch();

 return 0;
 }

//---

 void get_random_alpha(void)
 {
 for(p=0;p<len;p++)
 {x=random(26); alpha[j][p]=x+65;}

 // for(p=0;p<len;p++)cout<<alpha[j][p]; cout<<endl; getch();
 }
 //...

 void decrypt(void)
 {
 int k,p,x;

 20

 // 01.3.5.7.9.1.3.5.7.9.1.3.5
 strcpy(rw,"ABCDEFGHIJKLMNOPQRSTUVWXYZ");//right wheel
 strcpy(lw,"ABCDEFGHIJKLMNOPQRSTUVWXYZ");//left wheel

 for(k=0;k<len;k++)
 {
 for(move=0;move<26;move++) if(alpha[j][k]==rw[move]) break;

 //...now move both wheels by this amount & copy into
buffer.....
 for(p=0;p<26;p++)
 {
 x=p+move; x=x%26;
 rb[p]=rw[x]; lb[p]=lw[x];
 }

 //...now permute.....

 for(p=0;p<26;p++) rw[new_pos_r[p]]=rb[p];
 for(p=0;p<26;p++) lw[new_pos_l[p]]=lb[p];

 }

 }
 //..
 void get_score(void)
 {
 int z;

 score=0;
 for(z=0;z<26;z++) if(rw[z]==target_r[z]) score++;
 for(z=0;z<26;z++) if(lw[z]==target_l[z]) score++;

 if(score>bestscore)
 {
 bestscore=score;
 cout<<"score="<<score<<" keyword= ";

 for(m=0;m<len;m++) cout<<beta[m];cout<<endl;
 cout<<"right wheel "; for(z=0;z<26;z++)
cout<<rw[z];cout<<endl;
 cout<<"left wheel "; for(z=0;z<26;z++)
cout<<lw[z];cout<<endl;
 cout<<endl;
 }
 }

 //..

 void decrypt_beta(void)
 {
 int k,p,x;

 // 01.3.5.7.9.1.3.5.7.9.1.3.5

 21

 strcpy(rw,"ABCDEFGHIJKLMNOPQRSTUVWXYZ");//right wheel
 strcpy(lw,"ABCDEFGHIJKLMNOPQRSTUVWXYZ");//left wheel

 for(k=0;k<len;k++)
 {
 for(move=0;move<26;move++) if(beta[k]==rw[move]) break;

 //...now move both wheels by this amount & copy into
buffer.....
 for(p=0;p<26;p++)
 {
 x=p+move; x=x%26;
 rb[p]=rw[x]; lb[p]=lw[x];
 }

 //...now permute.....

 for(p=0;p<26;p++) rw[new_pos_r[p]]=rb[p];
 for(p=0;p<26;p++) lw[new_pos_l[p]]=lb[p];

 }

 }
 //..

Appendix 5

Sections of plain and ciphertext that yield after 78 letters the
wheels:

pt=B ct=D for position=178
right ZHOVIKMGNUDFPQCT.JALYBRWSE
left YUNEXKHRBSCPTAFLJQVZGDMOWI

plaintext, beginning at position 1500 from start of Exhibit 4:
INTHEDEVASTATIONLEFTINWARJSWAKEZWORLDIDEOLOGIESPLAYLITTLEPARTINASIANT
HINKINGANDARELITTLEUNDERSTOODWWHATTHEPEOPLESTRIVEFORISTHEOPPORTUNITYF
ORALITTLEMOREFOODINTHEIRSTOMACHSQALITTLEBE

ciphertext, beginning at position 1520 from start of Exhibit 4:
TZOFEPLGFIHADTYQAAYIYIOMWXYQHPGXTVOFXKHBNOFWLNKEFGJUWWPMHSMYDHHAJARKZ
JDVJYOMAEZRGSSTDCUOCEPBYILUOGBTVHDMRBNIDMGUHWEHZAGRQKOTCQEASCVDECNEPL
GGNWTRHXVVHLYLUQLIKHSZOJEIXBHWPSTAWCEVDYDW

References.

[1] http://www.mountainvistasoft.com/chaocipher/Silent-Years-
Chapter-21-Chaocipher.pdf
[2] The National Cryptographic Museum has kindly provided a direct
link to many items of interest donated by the Byrne family, including
all aspects referred to in this paper:
http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml

 22

[3] This scanned photo, of an artefact donated by the Byrne family,
was taken by David D’Auria and is kindly provided with permission by
the National Cryptologic Museum Foundation.
[4] For plain and ciphertexts of all Byrne’s Exhibits see the
summary made by Moshe Rubin at
 http://www.mountainvistasoft.com/chaocipher/Chaocipher-ASCII-
versions.htm
[5] See Progress report Nr 13 at Moshe Rubin’s ‘The Chaocipher
Clearing Site” at
http://www.mountainvistasoft.com/chaocipher/chaocipher-013.htm
[6]
http://www.nsa.gov/about/_files/cryptologic_heritage/museum/library/m
acarthur_speech.pdf
[7] John Byrne, Cipher A. Deavours and Louis Kruh. “Chaocipher enters
the computer age when its method is disclosed to Cryptologia
editors”. Cryptologia, 14(3): 193-197. Can be ordered at
http://www.informaworld.com/smpp/content~db=jour~content=a741902642.
Retrieved 10/12/2010.

