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One’s aim in solving logical puzzles is to find the solution by making use of several clues and restrictions. In
this paper, we solve a logical puzzle, the Battleship puzzle, by integer programming. Moreover, two integer

programming models (i.e., a cell-based model and a ship-based model) for the Battleship puzzle are compared
based on their complexity and solution times. The ship-based model requires more preprocessing work before
running the integer program than the cell-based model, but strongly outperforms the latter one. Finally, the
models are used to check if a puzzle contains redundant information and to create a puzzle with a unique
solution.

1. Introduction
One’s aim in solving logical puzzles is to find the
solution by making use of several clues and restric-
tions. Several techniques have been used to solve
riddles and puzzles. For example, iterative algorithms
are used to solve the Hanoi or Reves puzzles (Gedeon
1996, Majumdar 1994, Sapir 2004, Sniedovich 2002).
Optimal algorithms for Mastermind are considered in
Chen and Lin (2004). Integer linear programming is
used for compiling crossword puzzles (Wilson 1989),
Su Doku and the Log Pile (Chlond 2005), Rummikub
(Den Hertog and Hulshof 2006), the n-Queens problem
(Letavec and Ruggiero 2002), and several others. In
this paper, integer programming is used to solve the
Battleship puzzle.
The Battleship puzzle, sometimes called Solitaire

Battleships or Battleship Solitaire, is a logical puzzle
based on the Battleship guessing game. Such puzzles
often appear in puzzle magazines. According to
Wikipedia (Battleship puzzle 2009), the game was
invented in Argentina by Jaime Poniachik. The first
Battleship puzzle was published in 1982 in the Span-
ish magazine Humor and Juegos. After its interna-
tional debut at the first World Puzzle Championship
in New York City (Van de Liefvoort 1992), the game
gained more attention and appears regularly in puz-
zle magazines.

The goal of the Battleship puzzle is to determine
where the ships are located in a grid. In most puzzle
magazines, the sizes of these grids differ, where the
smallest puzzle is of size 5× 5 and the largest puzzle
is of size 15×10. To solve a puzzle, various clues and
restrictions are given. There are five sort of ships that
can be placed: a submarine of size one, a destroyer of
size two, a cruiser of size three, a battleship of size
four, and a carrier of size five (Table 1). A first clue
that is given, is the number of ships of each sort that
has to be placed. The ships are restricted to be placed
horizontally or vertically. Further restrictions are that
the ships cannot overlap, i.e., at most one ship can
occupy any given square in the grid, and that the
ships might not touch each other, i.e., each ship must
be surrounded by water. A second clue yields infor-
mation about the number of cells that hide a piece of
a ship in a certain column or row. Furthermore, some
cells of the initial grid may contain a piece of a ship
or water.
Example 1. First note that the information about

the number of cells that hide a piece of a ship in a
row is given on the right of the grid; the information
about the number of cells that hide a piece of a ship
in a column is given on the bottom of the grid. Table 1
indicates the number of ships of each sort that has to
be placed in the grid of Figure 1.
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Table 1 Specification of the Number of Ships of Each Sort That Has to
Be Placed in the Grid of Example 1

Type of ship Symbol Number to be placed

Submarine • 5
Destroyer � � 4
Cruiser � � � 3
Battleship � � � � 2
Carrier � � � � � 1

By using the various clues and restrictions, Exam-
ple 1 can be solved. The solution can be found in
Figure 2.
In §2, a cell-based model is derived to solve the

Battleship puzzle. Afterwards, a ship-based model
is derived in §3. Section 4 compares the cell-based
model and the ship-based model. Finally, a puzzle
with a unique solution is created in §5.

2. Cell-Based Model
First the problem is modelled by looking at each spe-
cific cell. Each cell may obtain exactly one out of seven
symbols; namely, ≈, �, �, �, �, �, or •. Which sym-
bol corresponds to a cell can be obtained by using the
clues and restrictions.
In this section, a definition of sets, parameters, and

variables is given. Afterwards, these are used to for-
mulate the cell-based model.

Sets
• Rows consists of all rows, where each row is

numbered and a particular row is denoted by i,
i ∈ �1� � � � � I�; I denotes the last row.

Figure 1 Initial Grid of Example 1
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Figure 2 Solution to Example 1
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• Columns consists of all columns, where each col-
umn is numbered and a particular column is denoted
by j , j ∈ �1� � � � � J �; J denotes the last column.
• Celltypes consists of all seven symbols, where

each symbol is numbered and a particular symbol is
denoted by k, k ∈ �0� � � � �6� and

k = 0 ≈
1 �

2 �

3 �

4 �

5 �

6 •�

• Ships consists of all ships, where each ship is
numbered and each number corresponds to the length
of the ship. A particular ship of length l is denoted
by l, l ∈ �1� � � � �5�.

Parameters
• Ri denotes the number of cells that must contain

a piece of a ship in row i, i ∈ �1� � � � � I�.
• Cj denotes the number of cells that must contain

a piece of a ship in column j , j ∈ �1� � � � � J �.
• Ti� j� k = 1� if cell �i� j� contains symbol k

in the initial grid;
= 100� otherwise.

• Sl denotes the number of ships that has to be
placed in the grid for each sort l ∈ �1� � � � �5�.
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Variables
• The decision variable

xi� j� k = 1 if cell �i� j� contains symbol k,
= 0 otherwise�

• The decision variable

si� j� l = 1 if a ship of length l starts (i.e., has
symbol �, �, or •) in cell �i� j�,

= 0 otherwise�

Now a cell-based model can be formulated. Notice
that the Battleship puzzle formulated as an integer
programming problem is a so-called feasibility prob-
lem. That is, the aim of the model is to find a solution
in which all constraints are satisfied.

Constraints
∑

k

xi� j� k = 1 ∀ i� j� (1)

xi� j� k = Ti� j� k ∀ i� j� k � Ti� j� k = 1� (2)
∑

j

∑

k �k �=0
xi� j� k =Ri ∀ i� (3)

∑

j

∑

k �k �=0
xi� j� k =Ci ∀ j� (4)

si� j�1 = xi� j�6 ∀ i� j� (5)

lsi� j� l ≤ xi� j�1 + xi� j+l−1�2 +
j+l−2∑

c=j+1
xi� c�5 + xi� j�3

+ xi+l−1� j�4 +
i+l−2∑

r=i+1
xr� j�5 ∀ i� j� l � l �= 1� (6)

∑

i

∑

j

si� j� l = Sl ∀ l� (7)

∑

k �k �=0
xi� j� k +

∑

k �k �=0
xi+1� j+1� k ≤ 1 ∀ i� j� (8)

∑

k �k �=0
xi� j� k +

∑

k �k �=0
xi−1� j+1� k ≤ 1 ∀ i� j� (9)

xi� j�1 ≤ xi� j+1�2 + xi� j+1�5 ∀ i� j� (10)

xi� j�1 ≤ xi� j−1�0 ∀ i� j � j �= 1� (11)

xi� j�2 ≤ xi� j+1�0 ∀ i� j � j �= J � (12)

xi� j�2 ≤ xi� j−1�1 + xi� j−1�5 ∀ i� j� (13)

xi� j�3 ≤ xi+1� j�4 + xi+1� j�5 ∀ i� j� (14)

xi� j�3 ≤ xi−1� j�0 ∀ i� j � i �= 1� (15)

xi� j�4 ≤ xi+1� j�0 ∀ i� j � i �= I� (16)

xi� j�4 ≤ xi−1� j�3 + xi−1� j�5 ∀ i� j� (17)

xi�j�5≤xi−1� j�3+xi−1� j�5+xi�j+1�2+xi�j+1�5 ∀ i�j� (18)

xi�j�5≤xi−1� j�3+xi−1� j�5+xi�j−1�1+xi�j−1�5 ∀ i�j� (19)

xi�j�5≤xi+1� j�4+xi+1� j�5+xi�j−1�1+xi�j−1�5 ∀ i�j� (20)

xi�j�5≤xi+1� j�4+xi+1� j�5+xi�j+1�2+xi�j+1�5 ∀ i�j� (21)

xi� j�6 ≤ 1− xi� j−1�6 ∀ i� j � j �= 1� (22)

xi� j�6 ≤ 1− xi−1� j�6 ∀ i� j � i �= 1� (23)

xi� j� k ∈ �0�1� ∀ i� j� k� (24)

si� j� l ∈ �0�1� ∀i� j� l� (25)

Remark 1. Constraints (6), (8)–(10), (13)–(14), and
(17)–(21) may refer to cells that are outside the bound-
aries of the grid. We assume that xi� j� k equals zero if
i � �1� � � � � I� or j � �1� � � � � J �.
From constraint (1), it follows that each cell con-

tains one out of seven symbols; that is, no cell can be
empty. Subsequently, if a cell cannot contain a piece of
a ship, it must contain water. Constraint (2) requires
that if a symbol in a cell is given a priori, this symbol
cannot be changed or accompanied by another sym-
bol. Constraint (3) enforces that the sum of the cells
that contain a piece of a ship in row i of the final grid
is equal to the required number of cells that must con-
tain a piece of a ship in row i. The same restriction
holds for the columns and is given by constraint (4).
From constraint (5), it follows that if cell �i� j� con-
tains a ship of length 1, si� j�1 must be equal to one
and zero otherwise. Constraint (6) requires that if cell
�i� j� contains the first piece of a ship (i.e., symbol
� or �) of length l �= 1, the decision variable si� j� l
is equal to one. Constraint (7) enforces that the sum
of the ships of length l in the final grid is equal to
the required number of ships of length l that has to
be placed. The ships can be placed either horizon-
tally or vertically. Combining this with the restriction
that every ship has to be surrounded by water, it fol-
lows that it is not possible that two ships touch each
other crosswise, constraints (8)–(9). Furthermore, each
symbol that indicates a piece of a ship restricts the
preceding and following cells. Those restrictions are
given in constraints (10)–(21). Constraint (22) requires
that submarines cannot touch each other horizon-
tally or vertically. The other ships will not touch
each other horizontally or vertically by definition of
the crosswise restrictions (8)–(9). Finally, the variables
xi� j� k and si� j� l are restricted to be decision variables
by constraints (24)–(25), respectively.
The code of the implementation of the cell-based

model in AIMMS 3.6 can be found in the file “AIMMS
code of cell-based IP model.aim.”

3. Ship-Based Model
In this section, the Battleship puzzle is modelled by
combining grids in which one ship is located. An
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Figure 3 One of the Grids for the Ship-Based Model of Example 1
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example of such a grid, used in the solution of Exam-
ple 1, can be found in Figure 3.
There are five sorts of ships. Each of these ships can

be placed in a grid. Combining these grids gives a
solution to the Battleship puzzle. Which combinations
should be used and can be obtained by using the clues
and restrictions?
In this section, some additional sets, parameters,

and variables are defined. Afterwards, these are used
to formulate the cell-based model.

Sets
Note the following data:
• Gridsl consists of the grids in which one ship of

length l is located and is a subset of the overall set
gridsall.
• Gridsall consists of all grids in which one ship is

located where each grid is numbered. It is the union
of the grids in gridsl (i.e.,

⋃
l gridsl�. A particular grid

is denoted by g, where g ∈ �1� � � � �N �; N denotes the
last grid.

Parameters
Note the following data:
• Mi�j = 1� if cell �i� j� contains a piece of a

ship in the initial grid;

= 0� if cell �i� j� contains water in the
initial grid;

= 100� otherwise�

• Gi� j�g = 1� if cell �i� j� contains a piece of a
ship in the grid numbered g;

= 0� otherwise�

• Pi� j�g is equal to one if cell �i� j�, cell �i� j+1�, cell
�i+1� j�, or cell �i+1� j+1� of grid g contains a piece
of a ship and is zero otherwise; that is,

• Pi� j�g = 1� if Gi� j�g = 1, Gi� j+1�g = 1�
Gi+1� j�g = 1� or Gi+1� j+=1�g = 1�

= 0� otherwise�

Variables
The decision variables are defined as follows:

• yg = 1� if grid g is used in the final grid;
0� otherwise.

Now a ship-based model can be formulated as a fea-
sibility problem.

Constraints
∑

g

∑

j

yg1Gi� j�g =Ri ∀ i� (26)

∑

g

∑

i

ygGi� j�g =Ci ∀ i� (27)

∑

g∈gridsl
yg = Sl ∀ l� (28)

∑

g

Pi� j�gyg ≤ 1 ∀ i� j� (29)

∑

g

ygGi� j�g =Mi�j ∀ i� j �Mi�j = 0 or Mi�j = 1� (30)

yg ∈ �0�1� ∀g� (31)

Constraint (26) requires that the sum of the cells that
contain a piece of a ship in row i is equal to the
required number of cells that must contain a piece
of a ship in row i. The same holds for the columns
by constraint (27). Constraint (28) enforces that the
sum of the ships of length l in the final grid is equal
to the required number of ships of length l that has
to be placed in the grid. Constraint (29) ensures that
no grids are used in the final grid, which cannot act
together. Two grids cannot act together if the ships
touch each other, either horizontally, vertically, or
crosswise. Moreover, two ships cannot overlap each
other. Note that those grids that have ships that will
overlap each other or touch each other in cell �i� j�, or
cell �i� j + 1�, or cell �i+ 1� j�, or cell �i+ 1� j + 1� both
have Pi� j�g = 1. From constraint (30), it follows that if
the initial grid has a piece of a ship in a cell, the final
grid also has a piece of a ship in that cell; if the initial
grid has water in a cell, then the final grid also has
water in that cell. Finally, the variable yg is restricted
to be a decision variable by constraint (31).
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The code of the implementation of the ship-based
model in AIMMS 3.6 can be found in the file “AIMMS
code of ship-based IP model.aim.”

4. Comparison of the Models
This section compares the complexity of the models
presented in §§2 and 3.
The complexity of the cell-based model of §2 is, in

part, determined by the number of variables and con-
straints. Recall that I is the number of rows and J is
the number of columns. The total number of variables
is at most equal to

12IJ + 1� (32)

and the total number of constraints is at most equal to

29IJ − 2I − 2J + 5� (33)

The total number of variables in the ship-based model
is at most equal to

9IJ − 10I − 10J + 1 (34)

for I ≥ 4, J ≥ 4 and at least one strict inequality. The
total number of constraints is at most equal to

2IJ + I + J + 5� (35)

Although the difference in the number of variables
is relatively small, the number of constraints strongly
differs. Because the ship-based model has fewer con-
straints than the cell-based model, it can be expected
that puzzles will be solved faster by the ship-based
model than by the cell-based model. However, it
should be mentioned that the complexity of the mod-
els also depends on the structure of the constraint
matrix. Some empirical results on this structure are
discussed below when the models are used to solve
Examples 1 and 2.
The models were implemented in the computer

package AIMMS 3�6, in which the solver CPLEX 10�0
is used. The models are used to solve Example 1 of
the introduction and Example 2 of the appendix. The
solution times of Table 2 are obtained by a Dell Insp-
iron Intel�R� Core�TM�2 Duo CPU �RAM 4 GB�. The

Table 2 Solution Times of Examples 1 and 2

Number of Number of Number of Solution Number of
Variables variables nonzeros constraints time iterations

Cell-based
model

Example 1 1�806 18�736 3�274 0.26 sec. 975
Example 2 7�206 110�049 11�539 >10 hours >36�822�030

Ship-based
model

Example 1 1�101 15�856 220 0.00 sec. 0
Example 2 4�901 75�351 884 665 sec. 2�979�082

table shows that the ship-based model has fewer vari-
ables, fewer constraints, smaller number of nonzeros,
and solves faster than the cell-based model. Note that
the cell-based model is not able to solve the puzzle of
Example 2 within 10 hours of computation time.
Remark 2. For this paper two slightly different

models with the technique of combining grids
have been considered. The first model replaces the
parameter Pi� j�g by a parameter, which is equal to
1 if two grids cannot act together and is zero oth-
erwise. Constraint (29) is replaced by a constraint,
which excludes the use of two grids when this param-
eter is nonzero. The second model uses a slightly dif-
ferent formulation of Pi� j�g ; that is, Pi� j�g is equal to
four if cell �i� j� contains a piece of a ship, is equal
to one if one of the surrounding cells of �i� j� con-
tains a piece of a ship, and is zero otherwise. By this
definition, the summation in constraint (29) should
be at most 4 instead of 1. Comparison of the models
based on number of variables, number of nonzeros,
and number of constraints showed that both models
are less efficient than the ship-based model presented
in this paper. The same conclusion can be drawn by
comparison of the solution times found for the exam-
ples by each model.

5. Create a Puzzle with a Unique
Solution

This section describes how a puzzle can be created.
One of the main ingredients of a puzzle is the exist-
ence of a unique solution. By creating the puzzle, we
therefore start with the solution of a puzzle that has
been created manually; afterwards, we remove redun-
dant information such that the solution of the puzzle
remains unique. In this section, a method is presented
to find unique solutions of a puzzle. This is done
for the ship-based model. However, the same method
can also be applied to the cell-based version of the
model. At the end of this section, we use this method
to create a large-size puzzle.
To determine whether a puzzle is unique, the

model has to be run twice. Define the parameter ȳg
to be the solution to the puzzle, after the first run.
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Now the uniqueness of the puzzle can be deter-
mined by introducing the following objective function:

max− ∑

g � ȳg=1
yg +

∑

g � ȳg=0
yg�

Note that because the objective function is maxi-
mized, the term

− ∑

g � ȳg=1
yg

makes it optimal to set the value of yg to zero when
ȳg = 1, whenever that is feasible. On the other hand,
the term

+ ∑

g � ȳg=0
yg

makes it optimal to set the value of yg to one when
ȳg = 0, whenever that is feasible. Now if the puzzle
is unique, the solution of the second run, yg , will be
equal to the solution of the first run, ȳg , so that the
value of the objective function will become zero.
The puzzle of Example 1 has been tested for redun-

dant information. Cells �1�5�, �1�9�, and �7�10� are
found to be redundant. That means that the puzzle

Figure A.1 Initial Grid of Example 2
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still has a unique solution even when these cells are
removed from the initial grid. Finally, the technique
described in this section has been used to create a
puzzle: Example 2. The puzzle has a unique solution,
but still contains redundant information.

Supplementary Material
Files that accompany this paper can be found and
downloaded from http://ite.pubs.informs.org.

Appendix
Example 2. In most puzzle magazines, the size of the

grids differ, where the smallest puzzle is of size 5× 5 and

Table A.1 Specification of the Number of Ships of Each Sort That Has
to Be Placed in the Grid of Example 2

Type of ship Number to be placed

Submarine • 23
Destroyer � � 29
Cruiser � � � 12
Battleship � � � � 9
Carrier � � � � � 7

Figure A.2 Solution Example 2
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the largest puzzle is of size 15×10. Figure A.1 and Table A.1
show a puzzle of size 30 × 20, which is created by using
the technique described in §5. The solution of this puzzle is
given in Figure A.2.
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