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Abstract

The goal of the LP+ project at the K.U.Leuven is
to design an expressive logic, suitable for declarative
knowledge representation, and to develop intelligent
systems based on Logic Programming technology for
solving computational problems using the declarative
specifications. The ID-logic is an integration of typed
classical logic and a definition logic. Different abduc-
tive solvers for this language are being developed. This
paper is a report of the integration of high order aggre-
gates into ID-logic and the consequences on the solver
SLDNFA.

Introduction

The goal of computational logic is to design logics
for knowledge representation and to develop algorithms
to solve computational problems using the declarative
specifications. In principle, the declarative knowledge
representation methodology in logic is based on a sim-
ple idea. To describe his knowledge, an expert designs
the ontology of his problem domain: he defines the rel-
evant types of objects, and the relevant relations and
functions between these objects and chooses a logical
alphabet to name them. In the next phase, the expert
uses this alphabet to express his knowledge by a set of
logical sentences that are true statements on the prob-
lem domain.

In the choice of the alphabet, the expert may be
led by different and often non-compatible quality crite-
ria: naturality of the representation, expressivity of the
logic, efficiency of the representation, etc.. However, if
the goal is to obtain a clear declarative representation,
the expert will choose the alphabet as close as possible
to what he views as the relevant objects, concepts and
relationships in the problem domain. Alphabets match-
ing more closely the natural ontology lead to more nat-
ural representations.

Choosing the alphabet in accordance with the nat-
ural ontology of the problem domain imposes high re-
quirements both on the expressivity and on the problem
solving capabilities of the used logic. With respect to
the expressivity, higher order aggregates easily show up
in declarative representations of practical problem do-
mains. For example in the domain of university lecture

scheduling one of the constraints will be that if a lec-
ture l of course c takes place in a room r with a capacity
of rc students, then the number n of students enrolled
for course c must be less than rc. In a suitable logic,
the constraint can be represented using the cardinality
aggregate:

∀ c, l, r, rc, n. room of lecture(l, r) ∧ capacity(r, rc)
∧course(l, c) ∧Card({st|enrolled(st, c)}, n)→ rc ≥ n

Other frequently occurring aggregates are summation,
minimum, maximum, etc . . . Therefore aggregates are
extensively studied in logic programming and deductive
databases (Kemp & Stuckey 1991; Van Gelder 1992;
Ross & Sagiv 1992).

A natural choice of the alphabet also poses require-
ments on the level of problem solving capabilities of the
used logic. Illustrated in the domain of university lec-
ture scheduling, some basic concepts are lectures, time
slots, rooms. Basic relations between these concepts de-
scribe when and where lectures take place. The natural
choice to represent these relations are by (typed) predi-
cates (e.g. time of lecture/2 and room of lecture/2).
Now, consider the task of computing a schedule satisfy-
ing certain data and constraints (lectures to be given,
rooms and lecturers available, no overlap, etc . . . ).
This is a satisfiability problem or an abductive problem;
tables of these predicates must be computed that satisfy
the data and constraints imposed on correct schedules.
Note that at this point, we have only chosen the alpha-
bet; we have not formalized one single iota of knowledge
in a logical formula. This shows that often, satisfiabil-
ity checking or abduction is a natural companion and a
natural consequence of applying the declarative knowl-
edge representation methodology.

At the K.U.Leuven, the aim of the LP+ project is to
use both semantical and implementational techniques
of logic programming to develop a logic suitable for
declarative knowledge representation and to implement
efficient problem solvers for such a logic. In this pa-
per, we study satisfiability problems in the context of a
logic with higher order aggregates. The used logic is an
extension of inductive definition logic (ID-logic) (De-
necker 2000; Denecker 1998; Denecker 1995) developed
within the project. ID-logic is a conservative extension



of classical logic with a generalized notion of non mono-
tone inductive definitions. At the same time, the logic
can be seen as a natural generalization of Abductive
Logic Programming (Kakas, Kowalski, & Toni 1993)
and Open Logic Programming (Denecker 1995).

The technology that is used so far for reasoning and
problem solving in ID-logic is based on an integration
of techniques of abductive logic programming (Kakas,
Kowalski, & Toni 1993) and constraint logic program-
ming techniques (Jaffar & Maher 1994). The first pub-
lished presentation of such a procedure was in (Kakas &
Michael 1995; Kakas, Michael, & Mourlas 2000). (De-
necker & Van Nuffelen 1999) describes a similar integra-
tion of the abductive resolution method SLDNFA (De-
necker & De Schreye 1998) with CLP techniques and
presents some experiments in the context of ID-logic
specifications of some typical CLP-problems (such as
N-queens), and of scheduling and planning.

In this paper, we define an extension of ID-logic with
aggregates, sketch an extension of the solver of (De-
necker & Van Nuffelen 1999) to reason on aggregates
and describe two computational experiments with the
system for solving a sea-battle puzzle and a schedul-
ing problem. At the logical level, our work is based
on Van Gelders’s work (Van Gelder 1992) on aggre-
gates in the context of well-founded semantics. On
the other hand the implementation and experiments ex-
tend previous work described in (Denecker et al. 1997;
Seghers & Baeyens 1996). To the best of our knowledge,
this paper is the first report on solving satisfiability and
abductive problems in the context of (an extension of)
classical logic with higher order aggregates. All the
studies concerning aggregation we encountered, were in
the context of querying systems.

Because an abductive system for ID-logic cannot be
complete (computing satisfiability of a classical first or-
der theory is a undecidable subproblem of the compu-
tation of an abductive solution of an ID-logic theory.),
the current implementation is only valid for a restricted
class of problems. But the experiments show the fea-
sibility of reasoning on a useful class of specifications
with aggregates.

ID-logic extended with aggregates

ID-logic

As mentioned, ID-logic is an extension of classical first
order logic (FOL) with inductive definitions. The logic
builds upon the earliest ideas on the declarative seman-
tics of logic programs with negation as failure. The
view of a logic program as a definition of its pred-
icates is underlying both the least model semantics
of van Emden and Kowalski (van Emden & Kowalski
1976) and Clark’s completion semantics (Clark 1978).
This idea was further explored in (Denecker, Marek, &
Truszczynski 1998), where it was argued that the well-
founded semantics for logic programming implements
a generalized principle of non-monotone induction. A
discussion of this is out of the scope of this paper.

An ID-logic theory T consists of a set of definitions
and a set of classical logic sentences. A definition is an
expression that defines a subset of predicates in terms of
the other predicates. Formally, a definition D is a pair
of a set Defined(D) of predicates and a set Rules(D)
of rules that exhaustively enumerate the cases in which
the predicates of Defined(D) are true. A rule is of the
form:

p(t)← F

where p ∈ Defined(D) and F an arbitrary first order
formula. The predicates in Defined(D) are called de-
fined by D, the others (not in Defined(D)) are called
open in D.

The semantics of ID-logic integrates classical logic
semantics and well-founded semantics. An interpreta-
tion M is a model of a definition D iff it is total (i.e.
2-valued) and the unique well-founded model of D ex-
tending some interpretation Mo of the functor and open
predicate symbols of D. An interpretation M is a model
of an ID-logic theory T iff it is a total model of its clas-
sical logic sentences and of its definitions.

Logical entailment is defined as usual: T |= F iff F
is true in all models of T .

ID-logic generalizes not only classical logic but also
abductive logic programming (Kakas, Kowalski, & Toni
1993) and open logic programming (Denecker 1995).
An abductive logic framework, consisting of a set of
abducible predicates, a set of rules and a set of FOL
constraints can be embedded in ID-logic as the the-
ory consisting of the FOL constraints and one defini-
tion defining all non-abducible predicates. Formally,
ID-logic extends ALP by allowing multiple definitions
and generalized syntax. However, it can be shown that
it is always possible to transform a set of definitions
into one single definition. As will appear in the next
section, current problem solvers for ID-logic are based
on the technology of abductive logic programming.

In the current version of the SLDNFA-system a sim-
ple many-sorted version of ID-logic is used. A type
inference system checks and completes a partial set of
user-defined type declarations: this produces a small
overhead compared to the benefits it brings: e.g. error
checking, disambiguating expressions, etc. For more de-
tails, we refer to (De Mot et al. 1999). In the implemen-
tation, a Prolog-like style using capitals for variables,
and “,”, resp. “;” for conjunction, resp. disjunction is
used. For example a definition is represented as

uncle(X,Y)<- ( exists(Z): parent(Y,Z),brother(X,Z);
exists(A): aunt(A,Y),married(A,X) ).

aunt(X,Y) <- ( exists(Z): parent(Y,Z),sister(X,Z);
exists(A): uncle(A,Y),married(A,X)).

This definition defines the two predicates uncle and
aunt simultaneously. The other are open predicates.

FOL axioms are represented in the system in the
same style but are prefixed by the key-word fol. Ex-
amples are:

fol forall(X,Y):



uncle(X,Y), age(X,AgeX), ageY(Y,AgeY)
=> AgeX > AgeY.

fol aunt(mary,bob).

A special case. The definitions that appear in the
experiments in this paper are of a simple kind; they do
not contain recursion. The models of a definition with-
out recursion are exactly the models of the completion
of the definition (Clark 1978). Below, completed defi-
nitions of predicates will be denoted:

∀(p(X)↔ Bp[X ])

We call from now on Bp[X] the completion of p.

Aggregates

As mentioned in the introduction, aggregates have been
studied in logic programming and deductive databases.
(Kemp & Stuckey 1991; Van Gelder 1992; Ross & Sagiv
1992) proposed extensions of logic programming with
aggregates and showed how aggregate expressions can
be transformed and reduced to recursive logic programs
using certain schemata. These transformations define
at the same time the declarative and procedural seman-
tics for these extensions. The papers cover actually a
subclass of ID-logic theories, because they don’t have
the notion of open predicates. In the context of ID-
logic, where we deal with open predicates, the proposed
schemata (inductive definitions) can be used to define
the declarative semantics without extending ID-logic,
but the current implementation of the solver cannot
cope with the reduced programs due to their highly re-
cursive nature. If the current implementation would be
extended with a proper notion of tabling these defini-
tions probably could be computed. Therefore we take
another approach by introducing new language primi-
tives, which allows us to use aggregation without the
computation of recursive definitions.

We define first two basic concepts of our aggregate
expressions.

• A Set expression is an expression of the form:

{x|F [x]}

where x is a tuple of variables and F [x] a first order
formula. It denotes the set of tuples x that satisfy
F [x]. Three sorts of variables are distinguished in a
set expression: local variables are quantified inside F ;
their scope is the quantifier. Parameter variables are
the elements of x; their scope is the set expression.
The other variables are free variables.
In the following example the set expression denotes
for a person Y the set of all aunts of Y which are older
than 50.

set([X],(exists(AgeX):
aunt(X,Y),age(X,AgeX), AgeX >50)))

• A function expression is of the form:

λx.y where F [x, y]

where x is a tuple of variables, y is a variable and
F [x, y] is a first order formula expressing a functional

relation between y and x. I.e. it satisfies the con-
straint:

∀x∃!y.F [x, y]

This expression denotes the anonymous function
mapping a tuple x to the object y for which F [x, y]
is satisfied. As above, we distinguish between local
variables, parameter variables and free variables of a
function expression.

A pure arithmetical function

λx.t[x]

where t[x] is an arithmetical term, is a shorthand for

λx.y where y = t[x]

The next example represents the function which maps
a person X to his age.

lambda([X] , Y where (exists(Z) : age(X,Z), Y=Z))

Set and function expressions are allowed to appear
only in aggregate expressions. The following aggregate
primitives have been implemented:

• minimum: minimum(Ψ, n) means that n is the min-
imal element of the set denoted by Ψ. In the current
implementation, the set expression must be of type
integer.

• cardinality: card(Ψ, n) means that the set repre-
sented by Ψ has n elements.

• summation: sum/3 has as arguments an n-ary set
expression, an n-ary function expression of a number
type, and a number as argument. sum(Ψ, f, s) means
that:

s =
∑

x∈Ψ

f(x)

• product: product/3 is analogous to sum/3 but ex-
presses the product of a function over a set.

Semantics

In this section, we briefly explore how the semantics of
ID-logic with aggregates can be defined. The seman-
tics of ID-logic can be extended using the same trans-
formational approach proposed by Van Gelder in (Van
Gelder 1992). In this approach, aggregate expressions
are transformed to recursive logic programs under well-
founded semantics. Because the models of an ID-logic
theory are well-founded models, the same approach ap-
plies.

In the following example we illustrate the approach
of (Van Gelder 1992) in the case of the minimum-
aggregate and show how it can be transformed into a
definition. We illustrate the transformation in the con-
text of open predicates. Consider the following theory
T where a is an open predicate ranging over integers:

T = {min({X |a(X)}, 4)}

This theory expresses that the minimum of the argu-
ment of the predicate a should be 4. Applying the
transformation scheme in (Van Gelder 1992), we ob-
tain:



fol mina(4).

mina(X) <- a(X), not bettera(X).
bettera(X) <- a(Y), Y<X.

In this simple case, we obtain a non-recursive defini-
tion for the new predicates mina and bettera. Abduc-
tive solvers can be used to successfully reason on these
theories. For example

• The query1true will lead to a successful derivation
generating the abductive answer ∆ = {a(4)}. To
solve the FOL constraint mina(4), a(4) must be ab-
duced.

• Likewise, the query a(6) will succeed with abductive
answer ∆ = {a(4), a(6)}.

• The query a(1) will fail. During the derivation, the
solver will abduce a(1) and will attempt to solve
mina(4). This is impossible because bettera(4) can
be derived.

In the case of summation and cardinality, applica-
tion of the schemata results in highly recursive logic
programs. As shown in (Van Gelder 1992), the trans-
formational approach poses no problem at the level of
semantics; however SLDNFA loops on such programs.
For this reason, we implemented aggregates in a differ-
ent (more efficient) way (see further on).

An abductive problem solver

From here on, we will assume that an ID-logic theory T
contains only one definition defining a number of predi-
cates simultaneously. Recall from previous section that
it is always possible to transform a set of definitions into
this form.

Given an ID-logic theory T with definition D, an ab-
ductive problem for a given query Q consists of com-
puting a set ∆ of definitions of ground atoms for each
open predicate of T and an answer substitution θ such
that D + ∆ is consistent and entails all FOL axioms
in T and ∀(θ(Q)). An abductive procedure computes
tables for the open predicates that can be extended in
a unique way to a well-founded model of the definition
and a model of the FOL axioms and of the query. This
way, an abductive answer can be seen as a compact
space-efficient representation of a model.

SLDNFA (Denecker & De Schreye 1992; Denecker &
De Schreye 1998) is an abductive procedure for nor-
mal logic programs. (Denecker & Van Nuffelen 1999)
describes an extension of this procedure to deal with
FOL axioms and generalized rules and queries, and
describes an integration of this procedure with con-
straint solvers. This integration is in a similar spirit
as ACLP (Kakas & Michael 1995; Kakas, Michael, &
Mourlas 2000). Due to lack of space, we can only give
the head-lines of this procedure. For more detailed de-
scription, we refer to (Denecker & Van Nuffelen 1999;
Van Nuffelen 2000).

1Note that in contrast to Logic Programming conven-
tions, queries are not denoted by denials.

A derivation for a query Q can be understood as a
rewriting process of states S, i.e. tuples (Θ, ∆, CS) of
a set Θ of FOL formulas and denials, a set ∆ of ab-
duced open atoms and a set CS of CLP expressions,
called the constraint store. A denial is a formula of the
form ∀X. ← F [X, Y ], where ← denotes negation. De-
nials are the only formulas that may contain universal
quantifiers. Free variables in FOL formulas and denials
represent objects of yet unknown identity.

The derivation starts with the initial state (Θ, ∅, ∅)
where Θ consists of Q and the set of FOL axioms in T .
The rewriting process proceeds by selecting an atom
in a formula F from Θ and computing a new state
depending on the sort of atom by applying the right
rule. E.g. if F is an open atom, the atom is abduced;
an atom interpreted in a CLP domain is added to the
constraint store; defined predicates are substituted by
their completion and the resulting formula is then sim-
plified. Disjunctive goals are dealt with selecting al-
ternative disjuncts using backtracking. Consistency of
denials with a selected open atom is checked by match-
ing this open atom against each abduced open atom in
∆. If fail is derived, the computation backtracks. The
computation ends in three possible ways:

• with a floundering error condition when universally
quantified variables appear in the selected atom in a
denial.

• with failure, if no solution is derived;

• with a successful derivation if a state S is derived
where CS is a consistent constraint store, ∆ a set of
ground open atoms and Θ consists purely of denials
that have been checked to be consistent with ∆.

Extending the implementation for
aggregates

We extended SLDNFA in a heuristic manner to reason
on aggregates. If an aggregate expression is selected
during the derivation, the set expression is rewritten
using the completion of the defined predicates and the
table of abduced atoms. This process leads to a big dis-
junction enumerating potential values occurring in the
set together with a CLP-constraint formula describing
the logical conditions under which the potential value
effectively belongs to the set.

When during the evaluation of a set expression open
predicates are encountered, this partially evaluated ex-
pression is remembered and each time an atom is ab-
duced later on, the procedure will check if it supports
a new potential element of the set. Hence, abduction
leads to new disjuncts in the set description.

The unfolded disjunction of potential elements and
associated constraints can be used then to compute
the value of the aggregate expressions. For ex-
ample, assume that for some cardinality expression
Card({x|F [x]}, N), F [x] could be reduced to a disjunc-
tion

x = v1 ∧C1 ∨ .. ∨ x = vn ∧Cn



in which vi are distinct potential values and Ci is the
associated constraint of vi. In this case the value of N
can be simply defined by the boolean sum

N = B1 + .. + Bn

where Bi is a boolean variable defined by the constraint
Bi ⇐⇒ Ci. These kind of constraints are known
as reified constraints (Carlsson, Ottosson, & Carlson ).
The above sum can be efficient computed using special-
ized library constraints of the finite domain constraint
solver.

The same principle can be applied in the case of min-
imum, maximum and summation and product. For ex-
ample, in the case of summation, each time a new po-
tential value vi is derived for the set, the function value
fi of this new potential element must be computed and
the sum of the expression is computed as the sum of
constraint expressions Bi × fi.

As can be seen above, the current implementation is
strongly focussed on constructing a finite domain con-
straint store. This restricts, at this moment, the set
expressions to have the property that all the variables
which value is unknown during the unfolding of the set
expression and which have influence on the membership
of a value in the set should be finite domain variables.
However this give us still the ability to reason on a large
group of applications.

Another restriction stems from the fact that the pro-
cedure will only observe the state and maintain a com-
plete disjunction w.r.t. ∆ during the evaluation of ag-
gregate expressions. The evaluation will not procedure
new abduced atoms. In general, it is easy to find appli-
cations axioms containing aggregate expressions should
lead to new abductions. For example, consider the fol-
lowing theory.

fol Card(set([X],a(X)),3).

To evaluate the query true with respect to this the-
ory, it is necessary to abduce 3 a-atoms. The current
implementation fails on this query.

It is a topic of future research to extend the current
solver to deal with a broader class of problems. How-
ever, for an important class of practical applications,
the solver works already fine. Namely when the open
predicates appearing in the set expressions represent
functions on some finite domain. In this case the solver
will ultimately compute a complete table of abduced
atoms of these predicates; consequently, the disjunctive
representation of the set expressions will be complete as
well. As illustrated in the experiments, many problems
satisfy this condition.

Optimization functions

Often, the expert is not interested in an arbitrary solu-
tion of an abductive problem but in an optimal solution
along some optimality criterion. In general it is an in-
tractable problem. But in the context of Constraint
Programming, one often recurs to the following prag-
matic solution. Given a constraint program and an op-
timization function, an initial solution is computed and

the value of the optimization function for this solution
is recorded; then the system backtracks and tries to find
other solutions; the value of the optimization function
of the best solution so far, is used to prune the search.
If the search stops, then it stops with an optimal so-
lution; otherwise, the user may stop the system and
extract the best solution so far. In a lot of cases this is
satisfying for the user.

We extended the abductive solver with a similar fa-
cility. Together with the query, the user can spec-
ify an optimization function to be minimized or maxi-
mized. This is done by specifying either minimize(V)
and maximize(V), in which V is an expression which
should be minimized or maximized. In practice, be-
cause the search can take a long time (or does not end),
the best solution that can be computed within a given
time is returned.

Experiments

We present two experiments: the first one is a soli-
taire puzzle based on the well-known battleship game.
The second one is about scheduling the maintenances of
units in power plants. The experimental results are ob-
tained using an implementation of SLDNFA as a meta
program on Sicstus Prolog 3.7 on a Sun Solaris machine.

The battleship puzzle

The objective of this puzzle (Gordon & Shenk 1998)
is to find the locations of 10 ships hidden on a 10 by
10 board. There are ships from different sizes: one
battleship, two cruisers, three destroyers and four sub-
marines. The ships can be placed everywhere on the
grid either horizontally either vertically oriented. They
are not allowed to touch each other, therefore a ship is
always surrounded by water (or the border of the grid).
The data consist of a given set of known locations of
boat pieces or water and the number of boat pieces on
each row and column.

The formalization of this puzzle in ID-logic starts
with the choice of the alphabet. The central concept
in this puzzle is the location of a ship. There are two
options: either one represents the location by one (X,Y)
coordinate (e.g. the left upper one), the length and the
orientation of the ship; or one defines the location by
means of the locations of the different parts of a ship.
We have chosen the last option.

Let us define the battle fleet by the following facts2:

ship(S) <- S in 1..10.

ship_type(1,battleship)<- true.
ship_type(S,cruiser) <- S in 2..3.
ship_type(S,destroyer) <- S in 4..6.
ship_type(S,submarine) <- S in 7..10.

length(battleship,4)<-true.
length(cruiser,3) <-true.
length(destroyer,2) <-true.

2In the specifications we omit the type information



length(submarine,1) <-true.

ship_length(S,L) <- ship_type(S,Type), length(Type,L).

ship length is an auxiliary definition which defines for
a particular ship its length. Then depending on the
type, ships consist of different number of parts, each
connected to a location. We represent this by the open
predicate ship(S,P,X,Y), which denotes a part P from
a ship S located at coordinates (X,Y).

domx(X) <- X in 1..10.
domy(Y) <- X in 1..10.

fol forall(S,Length,Part) :
ship(S),ship_length(S,Length), Part in 1..Length
=> ( exists(X,Y) :

domx(X),domy(Y), ship(S,Part,X,Y) ).

Defining a ship by the locations of its parts introduces
one specific statement namely that the parts are con-
nected to each other and not separated by water or
other boats. The next statement ensures also that the
ships are either vertically or horizontally oriented.

fol forall(S,P1,P2,X1,X2,Y1,Y2):
ship(S,P1,X1,Y1), ship(S,P2,X2,Y2), P1 \= P2
=> ( X1 - X2 = P1 - P2, Y1=Y2

; Y1 - Y2 = P1 - P2, X1=X2).

Another requirement is that two different ships do not
touch each other. Translated to the above chosen rep-
resentation of a ship, this means that the distance be-
tween two parts belonging to different ships is greater
than 1.

fol forall(S1,S2,P1,P2,X1,X2,Y1,Y2):
ship(S1,P1,X1,Y1), ship(S2,P2,X2,Y2), S1 \= S2
=> (abs(X1-X2) > 1 ; abs(Y1-Y2) > 1).

The above statements describe the general knowledge
about how ships are located. In the context of a solitaire
puzzle, the data specify for a subset of locations whether
they contain water or a boat part. We represent these
data by a set of atomic fol axioms of the form:

fol water(i,j). fol boat(i,j)

where water(i,j) (boat(i,j)) means that on coordi-
nate (i,j) there is water (a boat piece). As they exclude
each other, we can define water as a location that is
no occupied by a boat piece. A location occupied by a
boat piece is a location which is occupied by a part of
a ship (as defined above). Formally expressed

water(X,Y) <- not boat(X,Y).
boat(X,Y) <- ship(S), ship_length(S,L),

P in 1..L, ship(S,P,X,Y).

Up to now there was no need for aggregates. But the
puzzle gives also the number of ship parts located on a
certain row or column. As above we specify the data
by a set of atomic fol axioms.

fol row(i,n). fol column(j,m).

These two predicates are defined using the cardinality
constraint as:

row(I,N) <- card(set([S,P],
(exists(Y): ship(S,P,I,Y)),N).

column(J,M) <- card(set([S,P],
(exists(X): ship(S,P,X,J)),M).

We used the above specification to solve a number of
puzzles from the book (Gordon & Shenk 1998). The
abductive solver was able to reduce the above specifi-
cation to a finite domain constraint store. This phase
took about 1.5 second and is constant for all puzzles.
The time to find a solution of the constraint store var-
ied: we obtained from 18 seconds for easy puzzles till 3
minutes for most difficult ones. This means that most
of this time is spend in enumerating candidate solutions
by the CLP solver. The time could be improved if some
special search strategy as mentioned in the book, would
be followed, but in our declarative approach it is not
easy to specify a search strategy. This is an interesting
topic for future research.

Scheduling of maintenances

The next experiment is based on a real life problem
of a Belgian electricity provider. The company has a
network of power plants, distributed over different ar-
eas and each containing several power producing units.
These units need a fixed number of maintenances during
the year and the problem is to schedule these mainte-
nances so that the risk of power shortage (and hence,
import from France) is as low as possible. This ap-
proach extends earlier work described in (Seghers &
Baeyens 1996; Denecker et al. 1997).

The fact that a maintenance M lasts from week B till
week E, is represented by the predicate start(M,B,E).
This is the only open predicate in the specification.
Other predicates are either defined or are input data
and are defined by a table. We will introduce now the
constraints one by one.

• Maintenances (maint(M)) and their duration
(duration(M,D)) are given by a table. All mainte-
nances must be scheduled, thus for each maintenance
there exists an according start relation.

fol forall(M) : maint(M)
=> exists(B,E,D): week(B), week(E),

duration(M,D), (E = B + D -1), start(M,B,E).

week(W) <- W in 1..52.

• A table of prohibited(U,Bp,Ep) facts specify that
maintenances M for unit U are not allowed during the
period [Bp,Ep]:

fol forall(U,Bp,Ep,M,B,E) :
prohibited(U,Bp,Ep), maint_for_unit(M,U),
start(M,B,E)
=> (E < Bp ; Ep < B).

• Some of the maintenances are not allowed to overlap.
The table of non simult maint(M1,M2,Pre,Post)
facts describes this; Post and Pre represent the min-
imum distance between the two maintenances.

fol forall(M1,M2,Pre,Post,B1,E1,B2,E2) :
non_simult_maint(M1,M2,Pre,Post),
start(M1,B1,E1), start(M2,B2,E2)
=> (B2 > E1 + Post; B1 > E2 + Pre).

• Some maintenances should be done simultaneously,
as defined by a table of simult maint(M1,M2)



atoms. Two maintenances are simultaneous if the
period of one is included in the period of another.

fol forall(M1,M2,B1,E1,B2,E2) :
simult_maint(M1,M2), start(M1,B1,E1),
start(M2,B2,E2)
=> ( (B1 =< B2, E2 =< E1)

; (B2 =< B1, E1 =< E2)).

• Different maintenances for the same unit should not
overlap:

fol forall(U,M1,M2,B1,E1,B2,E2) :
unit(U),
maint_for_unit(M1,U), maint_for_unit(M2,U),
M1 \= M2,start(M1,B1,E1), start(M2,B2,E2)
=> (E1 < B2; E2 < B1).

• For each week the number of the units in maintenance
belonging to a plant P should be less than a maxi-
mal number Max. A given table of plant max(P,Max)
atoms defines for each plant the maximal number of
units in maintenance simultaneously.

fol forall(P,Max,We) :
plant(P), plant_max(P,Max), week(We)
=> (exists(OnMaint):

card(set([U], (unit(U),unit_in_plant(U,P),
in_maint(U,We))), Onmaint),

OnMaint =< Max ).

We also define here a unit in maintenance, namely a
unit is in maintenance during a certain week if there
exists a maintenance M of this unit ongoing that week.

in_maint(U,W) <- exists(M,B,E) :
maint_for_unit(M,U),start(M,B,E),
B =<W, W=< E.

• The capacity of the units in maintenance belonging
to a certain area should not exceed a given area max-
imum. To represent this, the summation aggregate is
needed. A table of capacity(U,C) describes for each
unit its capacity.

fol forall(A,Max,We,CapOnMaint):
area(A),area_max(A,Max),week(We),
sum(set([U],

(unit(U),in_area(U,A),in_maint(U,We))),
lambda([Un],

C where capacity(Un,C)), CapOnMaint)
=> 0 =< CapOnMaint, CapOnMaint =< Max.

in_area(U,A) <- unit_in_plant(U,P),
plant_in_area(P,A).

The above specification describes the problem prop-
erly. Given input data the solver comes up with a sched-
ule for the maintenances. However, the problem is to
find an optimal solution that keeps risk of power short-
age low. To do this, an optimality function must be
used.

This optimality function was proposed to us by the
people of the company. In the past, the company has
kept track of the electricity consumption during the
year. These data can be used to compute an estimate
for the peak load consumption during each week. Given
a schedule, for each week one can compute the reserve

capacity: the difference between available capacity (i.e.
the sum of capacities of all units not in maintenance
during this week) and the estimated peak load. The
optimization function is to maximize the minimal re-
serve capacity over the year.
total capacity(T) means that T is the sum of all

capacities of all units. This is a constant value for
the given problem. Peak loads are represented by a
table of peakload(Week,Load) atoms. The predicate
reserve(Week,R) can be defined as follows:

reserve(Week,R) <- exists(Load,T,InMaint) :
peakload(Week,Load), total_capacity(T),
sum(set([Unit], (unit(Unit), in_maint(Unit,Week))),

lambda([U],C where capacity(U,C)), InMaint),
R = T - Load - InMaint.

Using this predicate, an optimal solution for the
scheduling problem can be searched for if we add the
following to our query

minimum(set([R],(exists(W) : reserve(W,R)), M),
maximize(M).

This means that we are interested in a solution in which
the minimal reserve for one year is as high as possible.

Except for the representation of the optimization
function, the above representation is very similar to the
one used in (Denecker et al. 1997; Seghers & Baeyens
1996). The actual problem, given by the company, con-
sists of scheduling 56 maintenances for 46 units in one
year. The original system needed for this 24 hours to
setup the CLP constraint store. The bottleneck was
the reduction of the aggregates. In the current imple-
mentation of SLDNFA the construction only takes 45
seconds. The huge difference comes from the fact that
in the original system aggregates were implemented as
large disjunctions, over which was backtracked until a
consistent constraint store was found. The current im-
plementation will reduce the aggregates to a large fi-
nite domain constraint at once, and will not backtrack
within it. It is the CLP solver which backtracks in
the constructed constraint store; which is much faster
than the abductive solver can do. This difference also
explains why the current implementation spends more
time to find a good (optimal) solution (in 20 minutes
we find a solution which is 94% away from the optimal
which is 2 or 3 times slower a the original one): the
current constructed constraint store will contain all the
disjunctions over which the original system had been
backtracking to construct a small one.

A comparison with a pure CLP solution and the
above solution shows clearly the tradeoff between
declarative representation and a very fast solution. The
pure (optimized) CLP solution will setup its constraint
store in several seconds (3 to 4 seconds), and find the
same solution as the above specification within 2 min-
utes (compared to 20 minutes). But on the other hand
the CLP solution is a long program (400 lines) devel-
oped in some weeks of time in which the constraints
are hided within data structures, where as the above
representation is a simple declarative representation of



11 logical formulae, written down after some hours of
discussion.

We want to stress the advantages of moving to an
(even) more declarative representation than in the CLP
solution. Development time, mentioned above, is just
one of these advantages. Adaptability, extendibility
and maintenance are others. It is our experience (and
also reported in the experiments conducted with ACLP
(Kakas & Michael 1995; Kakas, Michael, & Mourlas
2000)) that changes in the specification of the prob-
lem may result in several hours of work to adapt the
CLP program. In the ID-logic representation, the same
changes typically require a few minutes of work. The
same distinction arises on the level of extendibility and
maintenance. Taking these advantages into account, we
believe that the reductions in speed mentioned above
are a very good buy.

Conclusion

In a lot of real world problems statements involving
aggregates are very common. As such aggregates natu-
rally show up in specifications. This paper gives some
preliminary results on the feasibility of using declara-
tive specifications with aggregates to solve nontrivial
computational problems.

The extended abductive solver used in our experi-
ments, is able to reduce the high level specification
to a finite domain constraint store. As can be ex-
pected, the generated constraint store tends to be more
complex and less tuned to a specific problem than
the ones generated by hand-written CLP programs.
This disadvantage is covered by advantages as develop-
ment time, adaptability, extendibility and easier main-
tenance. However, at least in the context of the above
experiments, reasonable efficiency could be obtained.
A way to improve the performance will be to optimize
the generated constraint store. Currently optimizations
done in a hand-written CLP program aren’t applied.
We expect that an automated optimization will reduce
the difference between both substantially.

Further research needs to be done to get a better
characterization of the class of problems the implemen-
tation can handle. Together with a formal represen-
tation of the aggregate expression evaluation procedure
we should be able to present a proof of correctness of the
procedure for this class. Another topic is how we can
broaden this class without loosing to much efficiency.
Further we also expect that the introduction of tabling
in the proof procedure will facilitate the treatment of
aggregates considerably.
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